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ORTHOGONAL SPLINE COLLOCATION 
LAPLACE-MODIFIED AND ALTERNATING-DIRECTION 

METHODS FOR PARABOLIC PROBLEMS ON RECTANGLES 

BERNARD BIALECKI AND RYAN I. FERNANDES 

ABSTRACT. A complete stability and convergence analysis is given for two- and 
three-level, piecewise Hermite bicubic orthogonal spline collocation, Laplace- 
modified and alternating-direction schemes for the approximate solution of lin- 
ear parabolic problems on rectangles. It is shown that the schemes are uncon- 
ditionally stable and of optimal-order accuracy in space and time. 

1. INTRODUCTION 

In this paper, we present and analyze several two- and three-level schemes 
for the approximate solution of the parabolic problem 

-? +Lu=f(x,y, t), (x,y, t) E Q_Qx (0, TI, at 

(1.1) u(x, y, 0)= g(x, y), (x, y) E Q, 

u(x, y, t) = g2(X, y, t), (x, y, t) E aQ x (0, T], 

where Q = (0, 1) x (0, 1), aQ denotes the boundary of Q, and the linear 
differential operator L is given by 

) Lu = - aa,(x y, t)09 
u 

- a a2(x, y, t) ) 

(1.2) 
9 9 9 Y) 

+ b (x, y, t)09u+ +b2(X, Y, t)au + c(x, y, t)u. 

Orthogonal spline collocation with piecewise Hermite bicubics is used for the 
spatial discretization. Perturbations of the Euler method and the trapezoidal 
rule are employed for the time discretizations to produce Laplace-modified (LM) 
and alternating-direction implicit (ADI) schemes. We show that the LM and 
ADI schemes are unconditionally stable with respect to the spatial and time 
discretization stepsizes and that they are of optimal-order accuracy in the HI 
and discrete maximum norms for the space and time variables, respectively. 
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Finite element Galerkin LM and ADI methods for solving parabolic problems 
in two space variables were analyzed in [ 1 5, 18]. Mimicking these methods, sev- 
eral authors have formulated and implemented some orthogonal spline colloca- 
tion LM and ADI schemes and demonstrated experimentally their stability and 
convergence properties; see, for example, [1, 6, 7, 8, 9, 10, 11, 12, 13, 22, 23]. 
However, no theoretical convergence analysis has been given for any of these 
schemes. It should be noted that orthogonal spline collocation for parabolic 
problems in one space variable was analyzed in [19]; see also [14]. Recently, 
in [21] and [20], optimal a priori L2- and HI-error estimates were derived for 
ADI collocation methods applied to the inhomogeneous heat and wave equa- 
tions, and to separable parabolic and second-order hyperbolic problems. In our 
convergence analysis of orthogonal spline collocation for parabolic problems 
in two space variables, we follow the approach of [2] for analyzing orthogonal 
spline collocation for elliptic problems. This approach is based on using the 
piecewise Hermite bicubic interpolant of the exact solution as a comparison 
function. 

In this paper, we present only theoretical analyses of two-level and three-level 
piecewise Hermite bicubic orthogonal spline collocation LM and ADI schemes 
for solving linear parabolic problems. In a companion paper [4], we discuss im- 
plementations of these schemes and present results of numerical experiments. 
It should be pointed out that at each time level, the LM methods require the so- 
lution of elliptic orthogonal spline collocation problems corresponding to Pois- 
son's equation. Such problems can be solved efficiently by the recently devel- 
oped fast Fourier transform direct algorithm of [3]. On the other hand, the ADI 
methods involve the solution of independent sets of one-dimensional orthogo- 
nal spline collocation two-point boundary value problems. Such problems give 
rise to so-called almost block diagonal linear systems that can be solved by the 
package COLROW [16, 17]. 

A brief outline of this paper is as follows. Preliminaries and general stabilty 
theorems for two- and three-level schemes in Hilbert spaces are given in ?2. 
Two-level LM Euler and ADI Euler methods and the ADI Crank-Nicolson or- 
thogonal spline collocation scheme are analyzed in ?3. Three-level LM and ADI 
schemes which are the counterparts of the LM and ADI finite element Galerkin 
methods of [15, 18] are analyzed in ?4. 

2. PRELIMINARIES 

2.1. Partitions, piecewise polynomial spaces, Gauss points. Let {Xk}Nxo and 

{Yl}NyO be two partitions of [0, 1] such that 

xO = 0 < xI < < XNx-I < XNx = 1, Yo = ? < YI < < YNY-I < YNY , 

Let hx = Xk -Xk-l, hly =y y-Y l-l, and let 

hx = min hx, hx = maxhx h min hy h =max hy, 2kx 
k 

k 5 x 
k k k= m y / I 'I/ 

h = max(hix, h).y 
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It is assumed that the collection of the partitions {Xk }lN' x {y}1o of Q is 
regular, that is, there exist positive constants a,, 2, and a3 such that 

ulhx < Ax, a1hy < Ay, U2 < =-X < U3. 

Throughout the paper, C denotes a generic positive constant which may depend 
on a,, 2, and (J3. 

Let A#x and Ay be spaces of piecewise Hermite cubics defined by 

J/f = {veC E [0, lI:VI[Xk_l,Xk] E P3, k = 1, ..., Nx} 

/Y = {v E C1[0, 1]: VI[yl,tiyt] E P3, 1 = 1, ..., Ny} 

where P3 denotes the set of polynomials of degree < 3, and let 

,//= {v E :X v (0) = v ( 1 )=0}, y 5 ,0= {v E :y v (0) = v ( 1 )=0 }, 

'/1 = .40x @X ?-AOY? 5 AOXO 

Let x = { i = {x'y 
y ,2 be the sets of Gauss points 

Xk,i = Xk-l + hkxij y= yl1 + hj, 5 

where 4j = (3 - V/3)/6, 52 = (3 + V3-)/6, and let 

,W = J(4x, XY) : x E Wx, 5Y ey E }-yl 

For u, v defined on 3', let (u, v)W and IIu II be given by 

NX Ny 2 2 

(u, V)g = 
k 

Z h hkZZ(uv)@4 i, 

k=1 1=1 i=1 j=1 

and 
IlulII = (u, U)492. 

The formula defining (., .)W is obtained by applying to ffQ(uv)(x, y) dxdy 
the composite two-point Gauss quadrature rule with respect to x and y . Since 
Lemma 2.3 of [19] implies that each v e I4O is uniquely defined by its values 
on 3', 1 f0 can be regarded as a Hilbert space with (., .)W as an inner product. 

In the following, Cp" q r (Q) denotes the set of all functions v (x, y, t) such 
that ai+j+kV/OXiayjatk is continuous on Q for all 0 < i < p, 0 < j < q, 
and 0 < k < r. If v E CP q r(Q), then IIVIICp,q, r() is defined by 

IIVIICp,q,r(-Q) =- O< ax max ijkV(x,5 y,5t) O<i<p O<j<q (x,y,t)Q aXiayiatk 
O<k<r 

Also, C([O, T], Hl(Q)) denotes the set of all functions v E C(Q) = C ? ?) 
such that v(., t) E Hl(Q) for t E [0, T], and 

IIVIIC([O,T],HI(Q)) omax<T IIV(, t)IIHH(Q) < 00. 
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2.2. Stability result. In this subsection, following the approach of [26, 27], we 
state and prove stability results for two-level and three-level schemes in Hilbert 
spaces. 

Let H be a finite-dimensional Hilbert space over the field of real numbers. 
Let (., *) and 11 ( 11 = denote the inner product and norm in H, respec- 
tively. A linear operator A from H into H is said to be selfadjoint, written 
as A = A*, if (Av, w) = (v, Aw) for all v, w E H. If A is a linear operator 
from H into H, then A > 0 means that (Av, v) > 0 for all v E H. If A 
and B are two linear operators from H into H, then A > B (A < B) means 
that A - B > 0 ( B - A > 0). In the following, E denotes the identity operator 
in H and T is a positive number. 

First we present a stability result for the two-level scheme 

Vn+l - 

(2.1) B 
n 

+ A(n)Vn = Wn n=0, 1, ... , J-1 , 

where B, A(n) are linear operators from H into H and vn wn E H. 

Theorem 2.1. Let A(n) = A(n) + A(n A(n) = [A(n)]*_ and let 0 1 0 

(2.2) A(n) > eOA, 

(2.3) A(n) - A (n- 1) < 8lTAo, 0 0 

(2.4) IIA(n)vI12 < 92(Aov , v), v E H, 

(2.5) B > 83E+ +A(n) 
20' 

where AO > 0 is a linear operatorfrom H into H, 6o, 83 are positive constants, 
and el, 82 are nonnegative constants. If vn, wn E H satisfy (2.1), then 

J-1 1 
(2.6) Omna<J (Aovn, n) < M [(AO)vo, v0) + L z IIWnII21 

where M = gjle[(C2+el 3)/(C0o3)]TJ 

Proof. Since vn = (1/2)(vn+1 + vn) - (T/2)vn ,where 

(2.7) vtn - 

equation (2.1) may be rewritten as 

(2.8) [B - 2Ao7)] n 
+ 1A )(vn+l + vn) = wn- vn 

n = 0, 1, ... , J- 1. 

It follows from the Cauchy-Schwarz inequality, the inequality af? < a2/(293) + 
93 f2/2, and (2.4) that 

(2.9) (wn, vn) - (A(n)Vn, vn) < 83 1VtnI12 + 1 IwnII2 + g2 (Aovn vn). 1 - 
,326 
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Taking the inner product of each side of (2.8) with 2Tv n and using (2.9) and 
(2.5), we obtain 

(2.10) r(A(n)(Vn+l + Vn), Vn) < T-jWnI12 + 12 (Aon, vn). 

Since A n) = [A n)]*, it is easy to verify that 

k-i 

TE(Ao n)(Vn+l + Vn) Vn) 

(2.11) n=k- 

( (k-l)Vk , vk) - Z([An) - A(n-1)]Vn, Vn - (A(O)vO, v?). 
n=1 

Summing both sides of (2.10) from n = 0 to k - 1, where k = 1, . . . , J, and 
using (2.11), (2.3), Ao > 0, and (2.2), we obtain 

(Aovk vk) <Vel(A()oV?) + T + e2 + ele3Z(Aovn vn) 0 0 
n0=306,6 

n=O ~~~~n=0 

for k = 0, ..., J. The bound (2.6) now follows from the discrete Gronwall 
inequality [24], which states that if ak, fik, k = 0, ..., J, are nonnegative 
numbers, flk < flk+I, and 

k-i 

ak < fk +YTan k = O, ...,J, 
n=O 

where y is a positive constant, then 

(2.12) a>n < e yrn fn n = O,.., J. Ea 

Next, we present a stability result for the three-level scheme 

Bvn+l -vn-I + 2RVn+l -2vn + Vn + A(n)Vn n 
(2.13) B 2T T 

n =1,... ,J-1, 

where B, R, A(n) are linear operators from H into H and V n Wn E H. 

Theorem 2.2. Let A(n) = A n) + A(n), An) = [A n)]*, R = R*, and let 

(2.14) A n) > 8OAO, 
0 

(2.15) gT[A4(n-) - 4R] < A (n) - A 1) < 9,T (n-1) 
0 

~~~0 0 0 

(2.16) IIA(n)vI12 ?< 2(Aov, v), v E H, 

(2.17) B > 63E, 

(2.18) R >1 + 14 4(n) 4 '0' 
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where Ao > 0 is a linear operator from H into H, g0, e3, e4 are positive 
constants and el, g2 are nonnegative constants. If vn, wn E H satisfy (2.13), 

then 

max (Aov', v') < M [(A(l)vO, v?) + (Rvo, vo) + (Rvi, VI) 

(2.19) - 
+ 2 (AOvl, Vl) +- ZIIWn12] 

C63 83 n= 

where M = 4[(1 + e4)/(ee04)]e[el+{e2(l+64)}/(eo63e4)]TJ . 

Proof. Since vn = (1/2)(vn+l + vn-') - (z/2)(vn - vn-1), where vn is defined 
by (2.7), equation (2.13) may be written as 

Bv +T [R-2 (n) (vn - vn-1)+ 2A (n)(n+l + n-1) = n -n 

n=1,..., J-1, 

where 
Vn+I - Vn-I 

Taking the inner product of each side with 2TVw = T(vn + vn-1), we obtain 

2(2 (Bv2, v0) + T2 ([R - -A (n)] (vtn - vn-1), Vn + Vn-I 

+ (nA n+I + vn-1), Vn+l _ Vn-1) = 2z(Wn -(n)Vn V). + (AO(fl-)AfI+1 

Since R = R* and A(n) = [A(n)]*, it is easy to verify that 

. R) - IA(n)] (vtn vn-1), vn + vn-I) 

= ([R - -A nj vn v) (R -A n)] vnI rn-I) 

and 

(A (n) (Vn+l + Vn- 1 ) Vn+I - Vn-1 ) 

(2.22) - (A(n))(Vn+l + Vn), vn+I + vn) + 
T' (A(n)vn , n) 

2 0 2 0 

-2 ((n) (Vn + vn- 1), vn + vn-I1) T2 ((n)Vn- 1 n-I 

From (2.20)-(2.22) it follows that, for n = 1, ..., J - 1, 

(2.23) 2T(Bvr, Vr) + IlIvnIII2 = IlIvn-11112 + 2T(wn - A(n)Vn v) 

where for k = n, n - 1, 

IIIvkII2 = - (A(n)(Vk+l + vk), vk+l + vk) + T2 ([R- vt, - -)A 
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By means of (2.15) it is easy to see that, for n = 2, ..., J - 1, 

IIIVn11112 = IIvn-11112 1+ +([A n)-A n-)](Vn+vn1), v + vnl) 

(2.24) 
4 

+ T ( [AOn - AO) ]tn-l vt- ) < ( 1 + 91Tz) lllvnl n-l l 

Also, as in (2.9), we obtain 

(2.25) n v) )-( s- v) ' s3 Ivl 
1W2 

+ 
V! (IIwn 112 + 

Vn 
- (Aovn, Vn). (2.25) t 1 tV 3 0 2e3 W 

Therefore, using (2.24), (2.25) and (2.17) in (2.23), and then summing both 
sides of the resulting inequality from n = 1 to k, where k = 1, ..., J - 1, we 
obtain 

k-i k 
VkIII2 < IIIVj1112 + e1Ti Z| jVnIjj2 + T 1 l 

n=1 63n=1 
(2.26) k 

+ 
6 

Z1:(A oVn, Vn~"). 
3 n=1 

Since A n) = [A n)]*, it is easy to verify that 

(2.27) jjjvnIjj2 = (A(n)vn+l, Vn+l) - T(An)vn+l, vn) + T2(Rvn v n). 

Also, since A(n) > 0, it follows from the Cauchy-Schwarz inequality, the in- 0 - 
equality a/f < Ea2 + fl2/(4t) and (2.18), that 

4(An)vn+l Vn) <? (Agn)vn+l, Vn+l) + L(Aon)vn ,vn) 

(2.28) 2 
< g(A (n)Vn+l v n+I + (RVtn V n). 

From (2.27) and (2.28), it follows that 

(2.29) IlIvVnIII > (1 - e)(A n)vn+l, vfn+) +12 [1- ]( Rvn, vn). 

Choosing 9 = (1 + e4)>1 in (2.29) and using (2.14), we obtain 

(2.30) (Aovn+Iv,n+1) 1 n<=l1, ... , JV-1. 

By arguments similar to those used in (2.27) and (2.28), it follows that 

01112 = (A(g)v, v?) + T(Agl)v?, v?) + T 2(Rv0, vs), 

and 
T(A(l)Vo V?) < (Ao1)V0, v?) + T 2(Rvo, vt), 

since A() < 4R. Therefore, 

(2.31) 1I1IIII12 < 2[(A(1) ?, v?) + T 2(Rv0, vs)]. 
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Using (2.26), (2.30) and (2.31), we obtain 

IIIvkII12 < 2[(A(')vO, vO) + T2(Rvo, v?)] + (AoV1 v1) +-E IjWnI2 
n= 1 

+ K8I + 92(l +4) IT kE |i|Vn| 2 
L 0Qg3g4 -ZII nII- 

Since T2(Rv?, v?) < 2[(Rv?, v?) + (Rvl, v1)], Gronwall's inequality (2.12) 
and (2.30) imply that for n = 2, ..., J, (Aovn, Vn) is bounded by the right- 
hand side of (2.19). Inequalities (2.14) and (2.18) show that (Aovn Vn) < 
M(Rvn, Vn) for n = 0, 1, and hence (2.19) follows. a 

3. TWO-LEVEL SCHEMES 

In this section, we present and analyze three two-level piecewise Hermite 
bicubic orthogonal spline collocation schemes for the approximate solution of 
the parabolic problem (1.1). We divide the interval [0, T] using the partition 
{tn}n],0 where tn = nT and T = T/J. Throughout this paper, Ln is the 
elliptic differential operator defined by the right-hand side of (1.2) with t = tn . 
Also, C denotes a generic positive constant that is independent of h and T. 

3.1. Laplace-modified Euler method. Assume that with respect to the spatial 
variables, (1.1) is discretized by orthogonal spline collocation with piecewise 
Hermite bicubics. If a forward finite difference quotient is used for the time 
discretization, then the resulting discrete collocation scheme is only condition- 
ally stable. Perturbing this scheme, we obtain the LM Euler method, in which 
the approximate solution U*n E ,, n = 1, ..., J, is required to satisfy 

(3.1) [(1 -AT)A) Uh h 
+ LnUhnG )=fG4,tn), 

E 9?, n = ? , I , J - I 

where uo E X# and U*naQ, n = 1,..., J, are assumed to be given. The 
functions uo and uhnla can be prescribed by approximating the initial and 
boundary conditions of (1 .1) by either Hermite or Gauss piecewise bicubic and 
cubic interpolations, respectively. For example, with g2n() = g2 (, tn), in Her- 
mite interpolation we require that 

(3.2) a gi) (Xk, yl) = O, i,j=0, 1, 0<k<Nx, 0<l<Ny, 

(3.3)g2x)(Xk,a)=0, i=0, 1, 0<k<Nx, a=0 1, n> 1, 

3 (3 - g2) a 
= ? h 92 

(a ,Yi)=0,5 i=0, 1, 0<l<Ny, a= 0, 1 n> 1 
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whereas using Gauss interpolation, we have 

(Uo 
- 

gl)(4) = ? 4 E 'Wl 

(Uz4-gl)(cr,f 3) =O, a ,ff =O, 1 , (u_ gn)(4X, I a) = 0, ae = O,, I, X (E X, n>1 
(3.4) (U 'gn(l XY =O a = , 1, Xy E Wy, n>1 

(un - g2n)(ox , ,B) = O, a e , = O, , 1x(E, n > 1. 

For computational purposes, it is more convenient to use Gauss interpolation, 
since it does not require the knowledge or evaluation of first partial derivatives 
of gi and g2. However, in this paper we consider Hermite interpolation, since 
the convergence analysis is much simpler for this type of boundary condition 
approximation (cf. [2]). 

Let u be a sufficiently smooth function defined on Q. For each t E [0, T], 
the comparison function u-(., t) E ,# is defined as the piecewise Hermite 
bicubic interpolant of u(., t), that is, 

(3.6) a(ij u) (xk, Yl, t) = O, i,j=O, 1, O<k<Nx, O<1<Ny. 
Ox'OyJ 

In the following, we write Un and un in place of u(., tn) and u-(., tn), 
respectively. For n = 0, . . . , J - 1 and 4 E , the truncation error Tn (4) of 
the scheme (3.1) is defined by 

(3.7) Tu() (1- TAA) T +Ln(u - (L). 

If u is a solution of (1.1), then [(Ou/Ot)n + Lnun](g) = f(A, tn), and hence 
Tun () indicates by how much u- fails to satisfy (3.1). The following lemma 
gives a bound on a discrete norm of the truncation error Tun. 

Lemma 3.1. Assume ai, bi, i = 1, 2, and c are such that al E C1 "00(Q) 
a2 E Co 1 ?(Q), and b1, b2, c E C(Q) . If u E C([O, T], H5 (Q)) n C2'01 '(Q) n 
CO, 2, 1 (Q) n C 0o 2(Q) and aulat E C([O, T], H3(Q)), then 

(3.8) 
J-1 

IIETII <C T?C + A2(IIuI12 (Q) + IIUIIC,2, 1(Q))] 

n=O 

[at C([T]H3(Q)) (O, T], H5 (Q))]} 

Proof. It follows from Lemma 4.2 of [2] and its proof that, for k = 0, 1, 2, 

|| ak(U - Ui) < Ch3 IuIIH3+k, = O, k. (3.9) 
O~xk-iayi 

Therefore, 

(3.10) IILn(un _ un)112 < Ch6IIUIIC([OT]H5(Q)) 
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Taylor's theorem gives 

(un+1 - un) () = T OAt tn < u),n < tn+1 

and hence the triangle inequality and (3.9) imply 

IIA(un+ - _n U)111 

?3.) C(h6IIuIIC([ T], H5()) + T[11u11C2,O60) + 11U11CO,2 (Q)]) 

By Taylor's theorem, 

(auj>n un I Un T 02U 

( at ) (4) T (4) = -_ t (4 ,k tXn), E , tn < tXn <_ tn+ I 

and hence 

(3.12) lOu\ - |< CT O 

Also, since OuXI/Ot = (Ou/Ot)x, 

n_ 1+ 

(+ ) 2 u +-u - ur uOt =- <it(-u uA)( , s)ds| 

I 

__n ___T_a 

(au 
2n1~ 

(3.13) < n-1) [ 4 ( 01 )] (.,s ) ds 

at 1 C([O, T], H3 (Q)) 

where the last inequality follows from (3.9). Finally, (3.8) is obtained by com- 
bining (3.10)-(3.13). o 

We show that if the constant A is sufficiently large, then the scheme (3.1) is 
unconditionally stable with respect to the initial condition and the right-hand 
side. 

Lemma 3.2. Assume al E C5'0?0(Q), a2 E CO'50(Q), bl, b2, c E C(Q), and 

0 < amin < al(x, y, t), a2(X, y, t) < amax, (X, y, t) E Q. 

Also assume that ai, i = 1, 2, satisfy a Lipschitz condition with respect to t, 
that is, there is a constant K > 0 such that for i = 1, 2, 

(314 ai(x, Y, tl) - ai(x, y, t2)1 < Kltl - t2j, 

(3.14) (x, y) EQ, tl, t2 E [O, T]. 

Let V nWn E J(? be such that 

(3.15) 
(I ,5 - a T_A T 

+ LnVnl g<) = Wn (<), 
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where 

(3.16) A >am,x/2. 

Then 

(3.17) max |IVn|() [< M amax(-AV0, V/) + T E 11W 
n 

I 

where M = CaIA e[c(a+f+f2+Y)2+K]T/amzn, C is a positive constant independent 
of ai, bi, i = 1, 2, c, h, T, and a, f3, i = 1, 2, y are such that 

0ala 01a2 <a 0 < 1< 5 
11OX IC(Q) 11atIC(Q) 

Jjbjjj1c(-0) < ,Bi, i = I1, 2, 11cIIC(-0) < Y. 

Proof. Let L*n, n = O, ... J- 1, and Ah be the operators from Y0' into 
.4O defined by 

(3.18) (Lnv) V ) =L nV(4) (Ehv)Q9) =AvV(),, e '. 

It is well known (see, for example, (2.5) of [2]), that -Ah is a positive definite 
operator from /4O into /4O, that is 

(3.19) CIIvI2 < (-Av, v), v . 

The operator form of (3.15) is given by (2.1), where 

A(n) = Ln B = E-TAAh. 

Employing the approach of the proof of Theorem 4.2 in [2] and using (2.6) of 
[25], Lemma 3.2 and (3.2) of [19], and (3.19), we can show that 

(3.20) (A(n)v, w),? 
= 

.(n)(v, 
w) + 

.(n)(v, 
w), 

where 5W(n), i =0,1, are real-valued bilinear forms on 1? x //? such that 

(3.21) 4_(n)(v, w) =?(n)(w, v), 

(3.22) amin(-Ahv, v)3 ? 0 v) ? amax(-AhV , v)3, 

(3.23) k4?_(n) (v, v) -|( v)I < KT(-Ahv, v)3, 

(3.24) 1 w)I < C3(-Ahv, v4S/ iwiiS, 

where 3 in (3.24) is given by 

(3.25) = a+ fl + fl2+Y. 

Let A(n) be the operator from .4'O into .4'O defined as follows: for v E e?, 
let A(n)v be the element in .O such that 

(3.26) ~ (An)V, w) = (n)(V, w), w E 
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The Riesz theorem guarantees that A(') is well defined, since '4f is a finite- 0 

dimensional Hilbert space and hence for fixed v, Vo(n) (v, *) is a bounded 
linear functional on /4O. Let A(') be the operator from Y(0 into ?O such 
that 

(3.27) A(n) = A(n) + A( 
0 

It follows from (3.21), (3.22), and (3.26) that 

(3.28) amin(-Ah) < A) = [Aon)]* < amax(-Ah), 

where the inequalities are to be understood with respect to the inner product 
(., .) in /4O. Moreover, by (3.23), 

(3.29) KTAh < A - - AOn-1) < KT(-Ah). 0 0 h 

Further, (3.27), (3.20), (3.26), and then (3.24) imply that 

IIA(n VII2f = ?l(v, A(n)v) C(A V, )12IIgA(n)vII,? 

from which it follows that 

(3.30) IIA(n)vII2 < C2(-Av, v)3, v e 

Using (3.16) and (3.28), we also easily verify that 

(3.31) B > E + Aw 
2o0 

Therefore, (3.27)-(3.3 1) imply that all assumptions of Theorem 2.1 are satisfied 
for H = /0 with Ao = -Ah, eO = amin, 8I = K, c2 = C32, c3 = 1. Hence, 
(3.17) follows from (2.6), (3.25), (3.28), (3.18), and the inequality (see (2.7) 
and (2.8) in [25]) 

(3.32) CIIVI12() -Av vS 

Using the bound on the truncation error and the stability result, we prove the 
following convergence theorem. 

Theorem 3.1. Assume that ai, bi, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma 
3. 1. Let A satisfy (3.16), and let un E /, n = 1,... , J, be solutions of (3. 1), 
where uo E /X and un Ion n = 1, ... , J, are given by (3.2), (3.3), respectively. 
Then 

max Ilun - uhIIH() < C T[IIUIICO0O02(Q) + IIUIIC2,01(Q) + |IUIICO,2,I(Q) 

0n[1 A+ IIIC IIUH(Q) + IIC([O,T],H5(Q))] 
ah 

[ C([0, T], H3 (Q))+IuIC[,]H()l} 
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Proof. A standard approximation result for piecewise Hermite bicubic interpo- 
lation (see, for example, [5]) gives 

(3.33) max IIU' - U IIHI(Q) < Ch 3I U I I C([O, T], H4 (Q)). 
O<n<J 

Let vn = u - u, n = O,..., J. Then vn E /o, v?- 0, and (1.1), (3.1), 
and (3.7) show that vn satisfies (3.15) with w n()= Tun(). Hence the required 
error bound follows from (3.8), (3.17), (3.33) and the triangle inequality. o 

3.2. ADI Euler scheme. Perturbing the LM Euler scheme (3.1) by an appropri- 
ate term that is first-order accurate in time, we obtain the ADI Euler scheme, 
in which the approximate solution un E /4, n = 1, ..., M, is such that, for 
n=O,... JJ-1, 

(3.34) 

[(I-T AA + T2A2 h) - U + Lnun1 (4) = f(P tn) E 9. 

As in the LM Euler scheme, u? E .4 and unIQ, n = 1,... , J, are assumed 
to be given. 

The truncation error Tun(4) of (3.34) is defined by 

(3.35) 

T I= [yt) -(1-TA. 2A2 + x Ln (un-un ) y 

The following lemma is a counterpart of Lemma 3.1. 

Lemma 3.3. Assume ai, bi, i = 1, 2, and c satisfy the assumptions of Lemma 
3.1. If u E C([O, T], H6(Q)) n C2 0 I(Q) n C0 2 1(Q) n CO 0 2(Q) and 
Ou/0t E C([O, T], H3(Q)), then 

J-1 
E 11 TUn 112 < 2[IIU12cO02Q 
n=O 

(3.36) + A2(IIuII20 z + IIUI102 (g)) + A UIC([O T] 6(Q)) 

EOU 2 ~ ~ 2IuIl~ 
[1h at Qo T] H3(Q)) C([O,T],H5(Q))J j 

Proof. Employing the approach used in the proof of Lemma 4.2 in [2], we can 
show that 

(3.37) O~~~4(un - un)~ CI~IH() (3.37) O~~X20y2 H Q 

The triangle inequality and the Sobolev embedding theorem yield 

and henc (. <) C fl u fo C([O, T], H6((Q)) 

and hence (3.36) follows easily from (3.8). oi 
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Next we show that for A sufficiently large, the ADI Euler scheme (3.34) is 
unconditionally stable with respect to the initial condition and the right-hand 
side. 

Lemma 3.4. Assume ai, bi, i = 1, 2, and c satisfy the assumptions of Lemma 
3.2. If vn,w n E are such that, for n=O, ,..., J-, 

(3.38) 

[I( - TAA + T 2A2 a4 
Vnd - vn + Lnvn] ()= wn (4) E 

where A satisfies (3.16), then (3.17) obtains. 

Proof. Let Ln, Ah be the operators from 04O into X?O given by (3.18), and 
let DXX, Dh be the operators from /? into 1? defined by 

(3.39) (Dhxv)(4) = a&2V(4) (Dh V)(4) - ___ 

Taking v(x, y) = vI(x)v2(y), vi E Oi?, i = 1, 2, we easily verify that 

a04v 
(DxxD h V) g) = a (), 4 E V E 4'. 

Therefore, the operator form of (3.38) is given by (2.1), where 

A = LL , B = E-TAh + 2A2DDxxDhy. 

It is easy to show that DXX~ - [DxX]* < 0, Dh [Dyhy]* < 0 with respect It is easy toshow that 
Dxxyy y 

to (., .)g, and that DxhxDhy =DhyDxh Thus DXDhxY > 0, and hence (3.17) 
follows from Theorem 2.1, using (3.27)-(3.32). o 

Combining the truncation error and stability results, we arrive at the following 
convergence result for the ADI Euler scheme. 

Theorem 3.2. Assume that ai, bi, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma 
3.3. Let A satisfy (3.16), and let un E X', n = 1, ..., J, be solutions of 
(3.34), where uo E X' and Un .Q, n = 1, ..., J, are given by (3.2), (3.3), 
respectively. Then 

max Ilu,- un < C {iT['JUICO,02(Q) + IJUIIC2,0,1(Q O<n<J hIIuIIi (o, Q + IICOQ) 

+ IIUIICO,2,1(ZQ) + IIUIIC([O,T],H6(Q))] 

+ h3[ 
au 

+ IIUIIC([o,T],H5()l} 
C | ([o, T], H3 (Q) ) A (O8T 5() 

Proof. The proof of the theorem is similar to that of Theorem 3.1 and follows 
from (3.36), (3.17) and (3.33). o 

3.3. ADI Crank-Nicolson scheme. In this subsection, we consider a second- 
order in time two-level ADI scheme for the solution of (1.1) with L = L1 + L2, 
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where 

(3.40) LI u Ox a, a(x, y, t) Ox L2U = - 
aya2(X, y, t) ay. 

Let Li and L n+1/2, i = 1, 2, be differential operators given by (3.40) with t = 

tn and t = tn+112 (n + 1/2)z, respectively. The ADI Crank-Nicolson scheme 
consists of finding u*n E , n = 1, ..., J, such that for n = 0,..., J - 1, 

(3.42) U/(a, Y) = [(1/2)(un+1+2u) 
+ (1/4)(L2+ un+1 - LLn Uhn)](aI ), tna11=2 , 1. 

Our convergence analysis of the scheme (3.41) follows that of [26] for the fi- 
nite difference ADI Crank-Nicolson method. For e h, the truncation errors 

e (e) and TE / (), corresponding respectively to the first and second equa- 
tions in (3.41), are defined by 

un,12(a,- [Y(12) (Un+l2 + U 

(3.43) 1 
+ (LTl/42 + Ln+l/2)un+1/2 L Un_ Lau=, (c) 

[~~~~ 2 h 2 h)( n+ l 2 UY+)U +l/ 

(3.44) (3 )[ ad ) 
+ a(Ln 2 + n+ l/2)un+1/2 - -L in+i] (_)n 

where u> is the piecewise Hermite bicubic interpolant of u(., ta). For each 
343 w define u)2(, XY) e by (cf. (3.42)) 

(3.45) u>t+/I (x, +Y) = [(1/2)(u+Ln + u n) + (-/4)(z 2Un - z -)](x LnY) 
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where zn (., ,Y) E Zx is the piecewise cubic approximation to Ln u (U, XY) such 
that 

zn(a, (Y)=Lnun(a, :Y), ca=O, 1, 

(3.46) ~Zn( :)= L2nun(xk, 4 , k = 1, ..,Nx - I 

<x (Xk , Y)= 
2 

(Xk , y), k= O, .. Nx 

The following lemma gives a bound on the discrete norm of the truncation 
errors Tun,1 and Tun 2. 

Lemma 3.5. Assume aI E C1 0 0(Q) and a2 E C01, 2(Q) n C2,1,1(Q). If u E 
C([O, T],H5(Q)) n C2,2,1(Q) n C2,0,2(Q) n C0O2'2(Q) n C0'0'3(Q), 
L2u E C5'0?0(Q), au/Ot E C([O, T], H3(Q)), and 06u(a, *, *)/Oy5Ot E 
C([O, 1] x [O, T]), a = O, 1, then 

(3.47) 
J-1 

T Z[I ITu,II + II Tu, 2 II 
n=O 

<C T 4[IIUI12 + IIUII12,O,2(Q) + IIUII1O,2,2(Q) + IIUII1O2O,3(Q)I 

+ 
Ih IC([O, TJ, 

H5(Q)) + 
IIL2UIIC5,0, 0() + 

2| 
Tt ||- 

+ ma 1 5a,.,)t]k +a=0, 1 ,k=O, I ||Y ay5t I xl[ l][0, T])] 

Proof. It follows from (3.43)-(3.45) that 

Tun,1 (4= 'In'() + In2) + In3 ( (T/)4)-In( 

Tun, 2()= In'E, + In2(4 + In4 ()(T /4) In5(() 

where 

( au) n+ 1/2 un+l -Un 

-) = L n+I/2un+/2) - (1/2)Ln+l/2[Un+1 + un]( ) 

-3 = L n+l/2un+I/2(<) - Lnun(4) - (1/2)(Zn+l -Zn)g) 

In4(= Ln+l/2un+I/2() - L2n+Iun1(g) + (1/2)(zn+l _ Zn)- ), 

5 
- = L n+l/2(zn+1 _ Zn- ), 

and where Zn(, XY) E Ix is defined in (3.46). By Taylor's theorem, 

(au> n+1/2 Un+I - Un 2 

\jtJ T () ? 4IUIC,,(j 
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and hence (3.13) and the triangle inequality give 

(3.48) I II ,lI ? C T411UI12 + 6 | 
u 

Since 

-2() = Ln+l/2un+1/2(,) - (1/2)L n+l/2(un+l + Un)(4) 

+ (1/2)L n+l/2(un+l - + un _-u)()n 

using Taylor's theorem and (3.9), we obtain 

(3.49) 1III,JI22 < C T411u|12 + h6IIUIIC([OT]H5(Q))1 

Clearly, 
In3) = Jnl() + Jn2I) -(1/2)Jn3 () + (I/2)Jn3+1 , 

where 

Jnl (= Ln+l/2un+1/2(c) - (1/2)[Ln+lun+l + LnUn](g), 

Jn,) = LnuUn () -Lnu(n g) Jn3) =LnUn () _ Zn 

Using Taylor's theorem and (3.9), we obtain 

IJn (4)I < CT IIUIICO,2,2( ), IJ2 (G)I < Ch3I UIIc([o T] H5(Q)). 

For 4 = (CX, XY), where "x E [xl, xNx-1], using (2.17) of [5] with m = 2, 
p = 3, and q = r = o0, we find that 

I Jn3(4) I < Ch 3jjL2ujjC3,O,O(Q~). 

To bound Jn3 () for Xx f [xl, xNx_ I], we use the following result, which 
follows from (9.4) and (9.5) of [19] with r = 3, p = 1 and a = 2: if 
v E C5[0, 1] and vr E 1x is its piecewise Hermite cubic interpolant, then 

(3.50) 1 (v - vA-)" (4x) ? < Ch3 Iv(5) 1Ic[o, 1] , x E 9x 

Now, if "x E [0, xI] U [XNx-1, 1], using (3.50), we can show that 

IJn34)1 Ch [ll2ull3 oo(Q)+,a=O, I C|5 II([O, I] X[O, T])]j 

Similar considerations apply also to I4(4). Therefore, for i = 3, 4, 

(3.51) 

IlInI ? C CO, + h [uC([o T] H5(Q)) + IIL2uIC3, 00 (-Q) 

+ max (a,.,.)a 
2 

aO 1 |y C([O, I]x[O, T]) 

Clearly, 
In) = Jn4( ) + Jn)Jn I 
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where 

jn 
4 

= L n+l/2[Ln+lun+l - L nuni( 

n+12[Lnun - zn](), Jn6() L n+l/2[Ln+1un+1 - zn+1 

It follows easily from Taylor's theorem that 

JJn4((:)j < CTIIUIIC2,2,1(ZQ). 

For 4 = (4X, XY) with Xx E [xl, xNx-1], using (3.50), we obtain 

JJn (<:)J J Jn6(<:)j < Ch 3ljL2UIIC5,00O(Q~). 

If Xx E [0, xi] U [XN -I, 1], then by (2.5) of [19] it can be shown that 

6 
~)Jn(5) 

? C h__L 6 
Jn ~2CII5O0(O Q) 01hma (a6 I J (4)-J5 () 1< C[h l L2u ll c o (Q + 

Tam=O, I | ay 5 a t I 
C([O, I ] [0 , T])] 

Therefore, 

Iln 1S< C {h6 JIL2U lC5,0,0(ZQ) 

(3.52) 2 

Finally, (3.47) follows from (3.48)-(3.52). o 

The next lemma shows that, for h sufficiently small, the scheme (3.41) is 
stable with respect to the initial condition and the right-hand side. 

Lemma 3.6. Assume that a1 and a2 satisfy the assumptions of Lemma 3.2. Let 
vn, wjn, wn EJ(O be such that, for n = 0, J - 1, 

[ V I -V + Ln+l/2vn+1/2 + L vn] (n ) = win), E 9 

(3.53) 
[Vn+ - vn+ /2 +Ln+1/2vn+1/2 +n+lvn+l] (g) = Wng), e E 

where, for each ,Y E gy7, one has Vn+1/2(., ,Y) E 4x'O Then, for h sufficiently 
small, 

O<n< [ 1V1L2(Q) + T _ 2 ay k oi L2| 1)] 
(3.54) 

i= 11 

V.2.T j 
i 
1nI2 +1WI21 < C [1(1 + 0.5TLO)v0IIg + T (IIw1IIl + IIw2IIl). 

n=O 
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Proof. It follows from (3.53) and the triangle inequality that 

11(1 + O.5TL n+l/2)vn+1/2113 < 11(1 - 0.5TL2n)VnII3 + 0.5TIIwn11l, 

(3.55) 
11(1 + 0.5TLn+ )Vn+l ?I.? < 11(1 - O.5TL n+l/2)vn+1/2IL1 + O.5ijIwnI11 

If h is sufficiently small, then inequality (4.14) of [2] implies that 

(3.56) (Ln/2v,v)s?O, ve J(2, (LnV, v)? > v,EY/. 

Since 

11(l ? O.5TLn+1/2)VII2 - IvI12 ? z(Ln+1/2v, V)v + ? IILn+1/2VII , 

the first inequality in (3.56) gives 

(3.57) 11(1-O.5zLln+12)vI ? 11 (1 + O55LLn2n2)v 1I2 v EV 

By a similar argument, 

(3.58) 1(1 - 0.5TLn) II? 
? n)vIL, v 

Hence, (3.55), (3.57), and (3.58) yield 

11(1 + 0.5TLn+?)Vn+lI< 11(1 + 0.5TL2n)vnII? + 0.5T(IIwnII' + IIW2nIL'), 

and therefore, for n = 0, ... , 

11(1 + 0.5TLn)vnI ?. ' 11(1 + 0.5TLO)v? 1 

(3.59) J- 1 
+ 0.5T. Z(IIWn 113 + IlWn 113). 

n=O 

For h sufficiently small, (2.6) of [25], (4.14) of [2], and (3.2) of [19] give 

11(1 + O.5TLn)vnII2 

(3.60) L2( hx 2 n 
Z 

L~in1 Nxhx Ov L2(O, 1) 

Hence, (3.54) follows from (3.59) and (3.60). o 

Finally we arrive at the following convergence result. 

Theorem 3.3. Assume that a1, a2 satisfy the assumptions of Lemmas 3.5 and 
3.6. Let u be the solution of (1.1) satisfying the assumptions of Lemma 3.5. 
Let Uh E#, n = 1,... , J, be solutions of (3.41), where uh E X and un Ia, 
n = 1, .. , J, are given by (3.2) and (3.3), respectively. Then, for h sufficiently 
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small, 

max 'IIu UhIIL2(~ N hx 2 O(Un n 2 11/2 max I||Un- _ llL122(n) + T "k h w 1 a 4,i |2 
O<n<J h 2+ T ay k 

L k=I 1 = L2(O, 1)] 

<C T 2[IIUIIC2,2lI(Q) + IIUIIC2,O,2(Q) + IIUIICO,2,2(Q) + IIUIICO,O,3(Q)I 

+ h3 11U11C([0,T],H5(n)) + IIL2uIIc5,O,O(Z) + t 
u 

a95+k u 
+ max (a,.. C(Otkx 0,T) =O, 1 ,k=O, 1 ytk[, T]) 

Proof Let vn = u - un, n = O, J, and let vn+1/2 =un+l/2 un+l/2, n 
0, J - . 1, where u n1/2 is defined by (3.45). Then (1. 1) and (3.41) imply 
that V n Vn+1/2 satisfy (3.53) with wn(4) = Tu 1 (4) and wn(=) = 

where Tu 1 (4) and Tu 2(c) aregivenby(3.43)and(3.44),respectively. Clearly, 
vn E ~o v 0 = 0, and Vn+1/2 (., XY) E 4xO. Hence the required inequality 
follows from (3.54), (3.47), (3.33) and the triangle inequality. o 

Theorem 3.3 shows that the ADI Crank-Nicolson orthogonal spline collo- 
cation approximation un converges to the exact solution Un with accuracy 
O(T2 + h3) in a norm that is stronger than the L2(Q)-norm but weaker than 
the HI(Q)-norm. 

4. THREE-LEVEL SCHEMES 

In this section, we present and analyze three three-level piecewise Hermite 
bicubic orthogonal spline collocation schemes for the approximate solution of 
the parabolic problem (1.1). 

4.1. Laplace-modified method. In the orthogonal spline collocation LM method 
which is a counterpart of the finite element Galerkin LM method of [18], 
the approximate solution u*n E A, n = 2, 3, ..., J, is such that for n = 

1 , . . . ,J - 1, 

(4.1) 

Un+I u 
n- Un+I- 2un + u- _h _ h -_ 2AA h h h + Lnun P4 

= 
tn) 5 5 

where uo , uI E /f and un I., n = 2, ... , J, are assumed to be given. 
As in the case of the two-level schemes, we use the piecewise Hermite bicubic 

interpolant of the exact solution as the comparison function. Hence, for n = 
1, ... , J - 1 and 4 E 9', the truncation error Tun(4) of (4.1) is defined by 

(4.2) 

U=[(& nunI - - n-+ U2nI - 2u + un +u 
t YH 2T T2 +(A~~J() 
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A bound on the discrete norm of the truncation error is given in the following 
lemma. 

Lemma 4.1. Assume that ai, bi, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.1. If u E C([O, T], H5(Q)) n C2'0'2(Q) n C0O2 2(Q) 2 CO 0 3(Q) 
and Oul0t E C([O, T], H3(Q)), then 

J-1 

li IITUnII ? C1j24[IIUII2OO3 + A2 (IIUIIc2,,2(Q) + IIUIIcO12 2(Q))] 

(4.3) n=1h t C([O,T],H3(Q)) ( +2)IIUIIC([o,T]H5(Q))]}- 

Proof. By Taylor's theorem, 

(au n un1+l_ un- T2 03U t 

and 

A\(Un+ 1_ 2un + un-l1) (g,) = T2 
a 2 

(AU) t n ) 

where tn_ - < ti, nt n < tn+ . Hence, (4.3) follows from the triangle inequality 
and arguments similar to those used in the proof of Lemma 3.1. o 

Next we show that if A is sufficiently large, then the LM scheme (4.1) is 
unconditionally stable with respect to the initial condition and the right-hand 
side. 

Lemma 4.2. Assume ai, bi, i = 1, 2, and c satisfy the assumptions of Lemma 
3.2. Let vn wnE0 be such that, for n= 1,...I,J-, 

(4.4) 
v[ +l -vn-I 2Avn+ - 2vn +vnI +LnVn( W g) 

where 

(4.5) A > amax/4. 

Then there exists a positive constant M, independent of h and T, such that 

r ~~~~ ~~~J-1 1 
(4.6) max |V n |2 (Q) <M [(-Av? v?)v + (-Av1, v1), +TE T |Wn ||I 

L ~~~~~~~n=O J 
Proof. Let Ln and Ah be the operators from dfO into dfO defined in (3.18). 
Then the operator form of (4.4) is given by (2.13), where 

A(n) = Ln, B = E, R =-AAh. 

It follows from (3.27)-(3.31) and (4.5) that all the assumptions of Theorem 
2.2 are satisfied for H = A', with Ao = -Ah, co = amin c 1 = 

Kmax(a- 1 , [4) - amaxl1-), 2 = C32, where 3 is defined in (3.25), 63 = 1, 
84 = 4A/amax - 1 . Therefore, (4.6) follows from (2.19) and (3.32). o 
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The truncation error and stability results yield the following convergence 
theorem. 

Theorem 4.1. Assume that ai, bi, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.2 and that the solution u of (1. 1) satisfies the assumptions of Lemma 
4.1. Let A satisfy (4.5), and let un E A', n = 2, ..., J - 1, be solutions of 
(4.1), where uo E A' and un Ian, n = 1, ... , J, are given by (3.2) and (3.3), 
respectively. Then 

m |u~ - un- ||IIHI(n) < C { (-A(ul -u), uu u- 

(4.7) + z2[IIuIICO,0,3(Q) + IIUIIC2,0,2(Q) + IIUIICO,2,2(Q)] 

+h[3 [ u 
+ IIUIIC([O,T],H5(S))] } 

Proof: Let vn = un - un, n = 0,..., J. Then vn E A', v? = 0, and 
(1.1), (4.1) imply that the v n satisfy (4.4) with wn g) = Tun(E) , where Tun7(E) is 
defined by (4.2). Hence the required inequality follows from (4.3) and (4.6). o 

We now explain how uI E A' can be selected, and we also bound the term 

(4.8) (-A(ul - up), uI -u 
1 2 

which appears on the right-hand side of (4.7). For the first choice of uh, we 
assume that the differential equation in (1.1) is satisfied for t = 0 . Then, using 
Taylor's theorem, we obtain 

U1(X, y) = Z(X, y) + O(T2), 

where 
z(x, Y) = gl(x, y) + T[f(x, y, 0) -Log, (x, y)]. 

As stated in Theorem 4.1, uIIan is given by (3.3) with n = 1. To complete 
the definition of ul, we also require that 

(4.9) 

i j (Xk, Yl) y0, i,j= 0, 1, 1 < k < Nx-1, < 1l < Ny- , 
Ox'OyI 

Oi+l(ul - z) *h 
(Xk, a) =0, i = 0, 1, 1 < k < Nx-1, a =O, 1, Ox'Oy 

a+( - z) 
) (a, yi) 0, j = 0, 1, 1 < I < Ny - 1, a =O, 1, 

OxOyl 

h (a, A)=0, a, =0, 1. 
OxOy 

If z>r is the piecewise Hermite bicubic interpolant of z, then it is easy to see 
that ul = z>r on all interior partition cells, that is, cells [Xk_ 1, Xk, Yl-1 , YlI 
which do not have common points with an. (The choice ul = zr on Q 
would lead, in general, to uI - u>I $ 0 on aOn, which would prevent us from 
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using Lemma 4.2 in the proof of Theorem 4.1.) To bound (4.8), we use the 
obvious identity 

(4.10) v u-u I = - V2- v3 + v4, 

where 

V1 = -Up, V2 = Z-ZX, V3 = U -Z, V4 = UhZ 

Let 9* be the set of all Gauss points in ' which are not in the interior 
partition cells. Assuming that u and z are sufficiently smooth, using (3.9), 
Taylor's theorem and Theorem 5 of [5], we can show that 

(4.11) IlA\vlllA j, IJAV2119 < Ch3, IAV311k < CT2, 

(4.11) ^AV4(4)l < CT2h-2, ES* 

(4.12) IVI(4)I, IV2() < Ch4, E IV3(4), 1v4(4)C2, C E . 

Therefore, it follows from the Cauchy-Schwarz inequality that 

3 4 

I(Av, v),l < E Z hIAvjijjVjIIvjj + h2 Z IAV4(4)I Iv(4)l < C(T4h-1 + h6) 
i=1 j=1 MV* 

and hence 

(4.13) (-A(ul - ujr), us - u)12 < C(T2h-1/2 + h3). 

It should be noted that if (02u/0t2)(x, y, t) = 0 for (x, y) E an, which for 
example, occurs when g2 is independent of t, then h-1/2 does not appear in 
(4.13). 

Another way of choosing ul E X1, where ul Ian is given as before, is to 
perform one step of the Crank-Nicolson scheme, 

(4.14) [uh u + 2(L1uI + LOuO)] (E) [ 

Obviously, computing ul in this case requires the solution of one elliptic or- 
thogonal spline collocation problem. To bound (4.8), we set vn = un - un, 
n = 0, 1. Then vo = 0, vI E o , and (1.1), (4.14) yield 

(4.15) [(2E + TA(M))vl](4) = 2TW(4), E 9 , 

where AM1) = LI is an operator from A? into df defined by (3.18) with 
n = 1, and w E ro is given by 

(4) = E (aU)f()n UU (E,)+ 1 

2n=O atTn=O 
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If u is sufficiently smooth, then it is easy to show that 

(4.16) IIw 11 < C(T2 + h3). 

Now, using (3.27) with n = 1 in (4.15), and then taking the inner product 
(., .) of both sides with v1, we obtain 

(4.17) 211 JI'V +T(A(l)vl, vl)g?= 2T(W,Vl)&?- T(A(l vl ,v 

Using the Cauchy-Schwarz inequality, the inequality 

acj < (3/8)Ta2 + (2/3)T-r1f2 

and (3.30), we obtain 

2T(w, v1)g - r(A(l)v1, v1)g 
(4.18) 12+3 21I2 + 36 

(4.18) ~< 211vlll + 3T 2 1w l + C T (-AhVI , vl)gf. 

Thus, it follows from (4.17), (4.18), (3.28), and (4.16) that for z sufficiently 
small, 

(_A(U1 - U ), U' - U ? < CTz/2IIwfl < CT /2(T2 + h3). 

4.2. ADI methods. In this subsection, we present two three-level ADI schemes 
which are obtained by perturbing the LM scheme (4.1). The schemes of this 
section are orthogonal spline collocation counterparts of the corresponding finite 
element Galerkin schemes proposed in [15, 18]. In the first three-level ADI 
method, the approximate solution un E A', n = 2, 3, ... , J, satisfies 

[ 
+ 

?Y 22X2 ) Uy2 

h 
U2Th 

(4.19) 2u,nUh+ - 2u + un += 

- T2A h h S Lnn= 1,.., J-n1, 

where uo, u E A' and uInoa, n = 1,. .., J, are assumed to be given. 
For n = 1, ... , J - 1 and E 9, the truncation error Tun (4) of the scheme 

(4.19) is defined by 

Tn)= - (1 +4T2A2 a ) ux u1 

(4.20) L 
/n+ z2)L U1 -2uZ + u + L(u -up)] (4) 

Lemma 4.3. Assume that ai, bi, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.1. If u E C([O, T], H5(Q)) n C2'0'2(Q) n C0'2'2(Q) nC 
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and au/ate C([O, T], H6(Q)), then 

J- 1 

TE IITun II < C T 4 IIUIICO, O 3(Q) 
n=1 

2 
(4.2 1 ) ?(I||2O2 02 (Q) + II U 

IICC?22 
2(Q)) + 2L 2 t IC([O T],H6(Q))X 

+ h 6 au 
~~+ (1 A2IU1 

[ at lC([o T],H3(Q2)) ( 2)llC([O, T] HI (Q))] 

Proof. Since au a/at = (au/at)x, following (3.13) and using (3.37), we obtain 

a4 Un+1 -U ni 
2 
2 

ax2ay2 2 ) ax2ay2 \ 2T ) 

_ 1f(n+1)x a4 a 
(4.22) 2T (n- I)T ax2ay2 a t(u - u)(., s)ds 

I~ j(n+ IT a4 ~au)au](,s 2d 
<2T(nl O|a2aY2 [(at) at] 1S 

d 

au 2 

a at I C([O,T],H6(Q)) 

By a similar argument and the Sobolev embedding theorem, 

a104 (uln+1 n-I 1 (n+)T a4 a2 
(4.23) aX2ay2 2T ] - I J(n-)T aX2y2 a S)ds 

< 2T |n || aX2ay2 au , ds < C aU 
2 

2z Jn-1)x y atC[,TH62) 

Hence, the triangle inequality, (4.22) and (4.23) give 

(4.24) a4 (U U < C ax2ay2 2-r atC[,T] 6Q) 

Inequality (4.21) now follows from (4.3) and (4.24). o 

The convergence result for the scheme (4.19) is given in the following theo- 
rem. 

Theorem 4.2. Assume that ai, b-, i = 1, 2, and c satisfy the assumptions of 
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma 
4.3. Let A satisfy (4.5), and let Un E A', n = 2, ..., J - 1, be the solution 
of (4.19), where uo E 4' and un Io , n = 1, ..., J, are given by (3.2) and 
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(3.3), respectively. Then 

max IIU' - UhIIHIH(Q) 
O<n<J 

< C {( A((Uh Up), Uh - u> 

+ z2 
[IUIICu03(QO) + IIUIIC2o02(Q) + IIUIICO,22(Q) +a C([O,T],H6(u)) 

+ h3 [ ut +C([O,T],H3(Q)) IIUIIC([O,T],H5(Q))]}. 

Proof. Let Ln, Ah and Dh Dh be the operators from 4'0 into At defined 
in (3.18) and (3.39), respectively. Let wn E JO be such that W =Tn 

E ', where Tun(4) is given by (4.20). Then (1.1) and (4.19) imply that the 
vn= u - u E ?0 satisfy (2.13) with 

A(n) = Ln B = E + 4 2A2 
DxhxDfh 

R=-Ah 

Since DxhxD h> 0 (see the proof of Lemma 3.4), it follows from the results 
established in the proof of Lemma 4.2 that all assumptions of Theorem 2.2 are 
satisfied. Therefore, the desired inequality is a consequence of (2.19), (4.21) 
and (3.32). o 

As in the three-level LM method, uI can be selected again in one of the two 
ways which are described at the end of ?4.1. 

In the second three-level ADI scheme, the approximate solution un E X, 
n = 2, 3, ...,J, satisfies 

un+1 - un-I 

L 2 

(4.25) -4( 22 2T3,2aX4 ) Un1 -2un +u1 +nLnu] (-) 

Pt(, tn), S E , n=1..J1 

where u , u , and un Ian, n = 2, ... , J, are assumed to be given. 
The truncation error Tu(n), n = 1, ..., J- 1, E W, of the scheme 

(4.25) is defined by 

-n 7 ) IF7 /A' - 2z 3)A2 u a )_ T- + T aX2ay2) 

(4.26) 
un+1 2un + un- 1 

I + Ln (un - un) T 2 

Lemma 4.4. Assume ai, bi, i = 1, 2, c, and u satisfy the assumptions of 
Lemma 4.3. Then Tu given by (4.26) satisfies (4.21). 
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Proof. Writing u+1 - 2u7 + u,-l as (un+I - un) -(un -u ) and using 
arguments similar to those in (4.22)-(4.24), we can easily show that 

a' 4 (u nT -2un + 1( 
(4.27) axay <C - 

:09X20y2 T a t |0| / ~~~~Q, - 
I(2) 

Hence, inequality (4.21) follows from (4.3) and (4.27). o 
The convergence result for the scheme (4.25) is given in the following theo- 

rem. 

Theorem 4.3. Assume that ai, bi, i = 1, 2, c, u, and A satisfy the assump- 
tions of Theorem 4.2. Let un e X, n = 2, ..., J - 1, be solutions of (4.25), 
where u5o E X and uniao, n = 1,..., J, are given by (3.2) and (3.3), re- 
spectively. Then 

max II un - unIH1~ 
O<n<J h IIHI (Q)) 

? C {( A(U U ), (ul - u)1/2 

+ T (j2(u - u> ), (uh - 

h2 [11u1y023(h) a 
+ TIU. CO,03(Q) + IIUIIC2O0,2(Q) + IIUIICO,2,2(Q) +au 

+h3[ C([O,T] H3( +2 IuIc([oT]H5(Q))] } 
Proof. The proof of the desired inequality follows from the results established 
in the proofs of Lemmas 4.2, 3.4, Lemma 4.4, and Theorem 2.2 applied to 
(2.13) with the operators 

A(n) = L, B = E, R =-LAh + 2TA2D XDyh D 

As in three-level LM method, uh can be chosen as in (4.9), so that if u and z 
are sufficiently smooth, then (4.13) is satisfied. Moreover, using (4.10)-(4.12), 
we can also show that 

T( a( u 
) h -) 

u 
< 

u 
3hY-312 + h3) 

a9X2 a9y2),?C3h/ 

It should be pointed out again that if (02u/0t2)(x, y, t) = 0 for (x, y) e 
which is the case when g2 is independent of t, then h-312 does not appear in 
the last inequality. 
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