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ORTHOGONAL SPLINE COLLOCATION
LAPLACE-MODIFIED AND ALTERNATING-DIRECTION
METHODS FOR PARABOLIC PROBLEMS ON RECTANGLES

BERNARD BIALECKI AND RYAN I. FERNANDES

ABSTRACT. A complete stability and convergence analysis is given for two- and
three-level, piecewise Hermite bicubic orthogonal spline collocation, Laplace-
modified and alternating-direction schemes for the approximate solution of lin-
ear parabolic problems on rectangles. It is shown that the schemes are uncon-
ditionally stable and of optimal-order accuracy in space and time.

1. INTRODUCTION

In this paper, we present and analyze several two- and three-level schemes
for the approximate solution of the parabolic problem

?9_1:+Lu=f(x,y,t), (x,y,)eQ=Qx (0, T],
(1.1) u(x,y,0)=g(x,y), (x,y)eQ,

u(x,y,t)=g2(X,y,t), (xay’t)eaQX(O’T]9

where Q = (0, 1) x (0, 1), 8Q denotes the boundary of Q, and the linear
differential operator L is given by

0 ou 0 ou
Lu= ~5x (al(x, v, t)—) ~ 3y (az(x, y, 05)

+bl(x’y’ t)g_z'*'bZ(x’y’ t)%
Orthogonal spline collocation with piecewise Hermite bicubics is used for the
spatial discretization. Perturbations of the Euler method and the trapezoidal
rule are employed for the time discretizations to produce Laplace-modified (LM)
and alternating-direction implicit (ADI) schemes. We show that the LM and
ADI schemes are unconditionally stable with respect to the spatial and time
discretization stepsizes and that they are of optimal-order accuracy in the H!
and discrete maximum norms for the space and time variables, respectively.

(1.2)
+c(x,y, Hu.
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546 BERNARD BIALECKI AND R. I. FERNANDES

Finite element Galerkin LM and ADI methods for solving parabolic problems
in two space variables were analyzed in [15, 18]. Mimicking these methods, sev-
eral authors have formulated and implemented some orthogonal spline colloca-
tion LM and ADI schemes and demonstrated experimentally their stability and
convergence properties; see, for example, [1, 6, 7, 8, 9, 10, 11, 12, 13, 22, 23].
However, no theoretical convergence analysis has been given for any of these
schemes. It should be noted that orthogonal spline collocation for parabolic
problems in one space variable was analyzed in [19]; see also [14]. Recently,
in [21] and [20], optimal a priori L?- and H'-error estimates were derived for
ADI collocation methods applied to the inhomogeneous heat and wave equa-
tions, and to separable parabolic and second-order hyperbolic problems. In our
convergence analysis of orthogonal spline collocation for parabolic problems
in two space variables, we follow the approach of [2] for analyzing orthogonal
spline collocation for elliptic problems. This approach is based on using the
piecewise Hermite bicubic interpolant of the exact solution as a comparison
function.

In this paper, we present only theoretical analyses of two-level and three-level
piecewise Hermite bicubic orthogonal spline collocation LM and ADI schemes
for solving linear parabolic problems. In a companion paper [4], we discuss im-
plementations of these schemes and present results of numerical experiments.
It should be pointed out that at each time level, the LM methods require the so-
lution of elliptic orthogonal spline collocation problems corresponding to Pois-
son’s equation. Such problems can be solved efficiently by the recently devel-
oped fast Fourier transform direct algorithm of [3]. On the other hand, the ADI
methods involve the solution of independent sets of one-dimensional orthogo-
nal spline collocation two-point boundary value problems. Such problems give
rise to so-called almost block diagonal linear systems that can be solved by the
package COLROW [16, 17].

A brief outline of this paper is as follows. Preliminaries and general stabilty
theorems for two- and three-level schemes in Hilbert spaces are given in §2.
Two-level LM Euler and ADI Euler methods and the ADI Crank-Nicolson or-
thogonal spline collocation scheme are analyzed in §3. Three-level LM and ADI
schemes which are the counterparts of the LM and ADI finite element Galerkin
methods of [15, 18] are analyzed in §4.

2. PRELIMINARIES
2.1. Partitions, piecewise polynomial spaces, Gauss points. Let {xk},ivgo and
{y,}fi’o be two partitions of [0, 1] such that

X0=0<X1<"'<XNX_|<XNX=1, yo=0<y1<~-<yNy_1<yNy=1.

Let hf =i —Xk—1, b/ =y;—y;_1, and let

hx=mkinh,f, hx=m]?xh,f, hy=mlinh;’, hy=m[axh;’,

h = max(hy , hy).
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It is assumed that the collection of the partitions {xk}fcvgo X {y,}fgo of Q is
regular, that is, there exist positive constants g,, g, and g3 such that

- - h
ohy <h,, o1hy<hy, Gzﬁz—xﬁds-
y

Throughout the paper, C denotes a generic positive constant which may depend
on 0, 0>, and o;.
Let .#, and .#, be spaces of piecewise Hermite cubics defined by

={veC'0, 1]:v|px_,,xg€EPs, k=1,..., Ny},
={veC0,11:v|y,_, P, I=1,..., N},
where P; denotes the set of polynomials of degree < 3, and let
={vedy:v0)=0v(1)=0}, 4 ={ved:v(0)=uv(l)=0},
%z%cbm’/y, MO = MR M.
Let & = {&, l},c > 5= j}f\j’j’jl be the sets of Gauss points
ék,i=xk—l+h])(céia é;),j=YI—1+h;)fj,

where & = (3-v3)/6, & = (3+/3)/6, and let
T={¢&.,8):&e&, g}
For u, v defined on &, let (u, v)gz and ||u|l¢ be given by

Ny Ny 2

(u, v)g = —ZZh"h}’ZZ w) (& & ),

k=1 I=1 i=1 j=1

and
lullz = (u, u)gl>.

The formula defining (-, -)¢ is obtained by applying to [[,(uv)(x, y)dxdy
the composite two-point Gauss quadrature rule with respect to x and y. Since
Lemma 2.3 of [19] implies that each v € .#° is uniquely defined by its values
on ¥, #° canbe regarded as a Hilbert space with (-, -)¢ asan inner product.

In the following, C?-4-"(Q) denotes the set of all functions v(x, y, t) such
that §'+/+ky /9x'9y Atk is continuous on Q forall 0<i<p, 0<j<gq,
and 0 <k <r.If ve CP97(Q), then ||[v]c,.,. r is defined by

al+j+kv
v A = max max |——————(x,y,t?
I “cp,q, ) Os’fﬁkofjsq oy €D 8x'8y16tk( y, ).
SKSr

Also, C([0, T], H(Q)) denotes the set of all functions v € C(Q) = C%°:9(Q)
such that v(-, t) € H(Q) for t € [0, T], and

Ivllcqo, 1, me)) = OfgaSXT”U(', Dl (@) < oo
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2.2. Stability result. In this subsection, following the approach of [26, 27], we
state and prove stability results for two-level and three-level schemes in Hilbert
spaces.

Let H be a finite-dimensional Hilbert space over the field of real numbers.
Let (-, ) and ||-|| = 4/(+, -) denote the inner product and norm in H , respec-
tively. A linear operator A from H into H is said to be selfadjoint, written
as A= A4* if (Adv,w) = (v, Aw) forall v, w € H. If A is a linear operator
from H into H, then 4 > 0 means that (4v,v) >0 forall ve H. If 4
and B are two linear operators from H into H,then 4 > B (A < B) means
that A— B > 0 ( B— A > 0). In the following, E denotes the identity operator
in H and 7 is a positive number.

First we present a stability result for the two-level scheme

’U"'H —pn

(2.1) B——-—T———+A<">v"=w", n=0,1,...,J-1,

where B, A" are linear operators from H into H and v", w" € H.

Theorem 2.1. Let A = A" + 4", A = [A1]*, and let

(2.2) AL > 94y,

(23) Ag’) - Aén—l) < 81‘L'A0 .

(2.4) 40| < ex(dov, v), weH,
(2.5) B > eiE + %Agﬂ,

where Ay > 0 is a linear operator from H into H, gy, &3 are positive constants,
and €, & are nonnegative constants. If v", w" € H satisfy (2.1), then

J—1
2.6 A", v") < M |(AQp0 0 + & w2
(2.6) [max (4ov”, v") < (ov,v)+83n§ll I,

where M = gy eleareies)/(eos)le]

Proof. Since v" = (1/2)(u™! +v") = (t/2)u], where
n+l1 _ »n

(2.7) - #

equation (2.1) may be rewritten as
Tl L nel ony _n 40 n
28 B A | v + 5 AP W™ 40 = w” - AP,
n=0,1,...,J—-1.

It follows from the Cauchy-Schwarz inequality, the inequality af < o?/(2¢3) +
€3f2/2, and (2.4) that

(2.9) (", o) — (A" o) < g3 0712 + ~—lw" |2 + L2 (Aov", 7).
283 283
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Taking the inner product of each side of (2.8) with 27v/ and using (2.9) and
(2.5), we obtain

(2.10) t(AP "+ "), o) < S + ﬁ—zr(on”, ™).
3 3

Since A(()") = [A(()”) I*, it is easy to verify that

k—1
T Z(Ag")(v”“ + ™), v
.11 ™° -
= (4f vk, k) = 3OS - AT, o) — (AP0, 00).
n=1

Summing both sides of (2.10) from n =0 to k-1, where k=1, ... ,J,and
using (2.11), (2.3), 4y > 0, and (2.2), we obtain

&)+ €183

k—1
—1/ 4(00,,0 ,,0 T n)|2

(onk,vk <eg ‘(A( vY, vY) + E w"||*+ ————=
) 0 0 ) 8083 ot “ “ 3083

k—1
T Z(onn s vn)
n=0

for k =0,...,J. The bound (2.6) now follows from the discrete Gronwall
inequality [24], which states that if ay, B,k = 0, ..., J, are nonnegative
numbers, fi < fi.1,and

k—1
< Pe+ytYy om,  k=0,...,J,

n=0
where y is a positive constant, then
(2.12) ap <e’B,, n=0,...,J. 0O
Next, we present a stability result for the three-level scheme

'U”+1 _ Un-l ,Un+l — 2pn n—1
(2.13) B—=; +7'R ) Ay =y,

where B, R, A™ are linear operators from H into H and v",w" € H.

Theorem 2.2. Let A = AT + 4", 40" =[4"]*, R=R*, and let

(2.14) AD > oy,
2.15) ertldy™" — 4R} < AP — ATV <eyeag ™Y,
(2.16) 1402 < ex(dgv, v),  veEH,
(2.17) B>eE,

(2.18) R> l_ifiAgm,
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where Ag > 0 is a linear operator from H into H, &y, €, &4 are positive
constants and €|, & are nonnegative constants. If v", w" € H satisfy (2.13),
then

n (1,0 .0
0r<nna<xJ(A0v v") <M |(4y'v", v") + (Rvg, vg) + (Ruy, vy)

(2.19) o
62T T
+ o (Aov' 0Y) + =
€3 X R
where M = 4[(1 + &4)/(eo4)]eler+{e2(1+ea)}/ (@osza)lt)

Proof. Since v" = (1/2)(v"*!' +v"*~1) - (1/2)(v} — v!~'), where v} is defined
by (2.7), equation (2.13) may be written as

1
—AE)")(’U'H'I +,Un—1) — " — A(l”) n

Bvl +1 [R - %Af)”)] (vf —vr H + 5

where
,Un+1 _ ,Un—l

27
Taking the inner product of each side with 2tv? = 7(v + v;'~"), we obtain

n _
vf =

2t(Bv}, v + ([R - %A(”)] (oF oY), vt + v,’"l>
(2.20)

+ %(A(()")(v”‘”1 +oumhy, ot — ) = 2g(w” — A, o).

Since R = R* and A{" =[4{"]*, it is easy to verify that

([R—EA(")}( L WL 1)

(2.21) | |
([ ) (o)
and
(Ag')(,vnﬂ + ,Un—l) , ot ,Un—l)
1 2
222) =3P+, 0 0" + (40 o))

_E(A(()”)(,Un_*_,vn—l),,vn +’U"_1) (A(") n—1 , ol l)
From (2.20)-(2.22) it follows that, for n=1, ... J -1,
(223)  2t(Bu}, vf) + [I[0"I12 = [ II; + 20(w" — 40", of),
where for k=n,n-1,

1 1
loX12 = Z(Af)")(v"“ + vk, vkt 4 k) 4 12 ([R ~ ZA(()")} vk, v,") :
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By means of (2.15) it is easy to see that, for n=2,...,J -1,

1
4

‘L' - -
+ 74 = 4w o < (L el Iy

_] — —
w112 = [llo" IRy + £ (A — AT D" + "), v v

(2.24)
Also, as in (2.9), we obtain
(2.25) (w", v}) — (AP, o7 < g3 |[vr|} + 5~ L || w"|? + 2382—(on", v").
3
Therefore, using (2.24), (2.25) and (2.17) in (2.23), and then summing both

sides of the resulting inequality from n=1 to k,where k=1, ..., J -1, we
obtain

k-1 k
T
vl < N0l + 8172 w117 + P > llwn?
n=1

821 Z(Ao’l)

Since A" = [4{"]*, it is easy to verify that

(2.26)

(227)  ll"]l12 = (A0, v+t — 2(Afm, o) + (Rof, o).

Also, since A" >0 , it follows from the Cauchy-Schwarz inequality, the in-
0

equality af < éa? + B%/(4é) and (2.18), that

2
(AP of) < B APV omy b TP, v
4é
(2.28) )

< é(A(()"),UnH , ,Un+1) + T

n n
é-(l +34) (th > Ut )

From (2.27) and (2.28), it follows that

i 1
(2.29) [[lv™]]12 = (1 = &)(4fum+! | vy 4 12 [1 - m] (Rvf', vf').
)

Choosing & = (1 +&4)~! in (2.29) and using (2.14), we obtain

1+84

(2.30) (dov™!, v™!) < vl "Mz,  m=1,...,J-1L

By arguments similar to those used in (2.27) and (2.28), it follows that
1001 = (4570, v°) + (45700, 0°) + Ry, v7),

and
(A(l)’v, , 1% < (A(()”vo, v + 72(Rv?, v0),

since Af)l) < 4R. Therefore,

(2.31) 11011} < 2[(4§"v°, 0°) + 2 (Rv, v))].
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Using (2.26), (2.30) and (2.31), we obtain

k
1 &7 T
kI < 20(4570%, v°) + 7 (Rop, )]+ (Ao, 1) + =3 "

k—1
82(1+84 nin2
T v .
L ] I

+ {81 +
n=1

Since 72(Rv?, v?) < 2[(Rv?, v°) + (Rv!, v!)], Gronwall’s inequality (2.12)

and (2.30) imply that for n =2, ... , J, (4pv", v") is bounded by the right-

hand side of (2.19). Inequalities (2.14) and (2.18) show that (A4gv", v") <

M(Rv", v") for n =0, 1, and hence (2.19) follows. O

3. TWO-LEVEL SCHEMES

In this section, we present and analyze three two-level piecewise Hermite
bicubic orthogonal spline collocation schemes for the approximate solution of
the parabolic problem (1.1). We divide the interval [0, T'] using the partition
{t,,}n_o, where ¢, = nt and 7 = T/J. Throughout this paper, L" is the
elliptic differential operator defined by the right-hand side of (1.2) with ¢t =1¢,.
Also, C denotes a generic positive constant that is independent of 2 and 7.

3.1. Laplace-modified Euler method. Assume that with respect to the spatial
variables, (1.1) is discretized by orthogonal spline collocation with piecewise
Hermite bicubics. If a forward finite difference quotient is used for the time
discretization, then the resulting discrete collocation scheme is only condition-
ally stable. Perturbing this scheme, we obtain the LM Euler method, in which
the approximate solution u, € #, n=1, ..., J, isrequired to satisfy

n+1_ n
G |1 P L @ = & 1),

(e%, n=0,1,...,J-1,

where u2 € # and ujlpq, n=1,...,J, are assumed to be given. The
functions u?, and u}|sq can be prescribed by approximating the initial and
boundary conditions of (1.1) by either Hermite or Gauss piecewise bicubic and
cubic interpolations, respectively. For example, with gJ(:) = g:(+, t»), in Her-
mite interpolation we require that

O™ (u) — g1) .
(3.2) W(xk,y1)=0, i,j=0,1, 0<k< Ny, 0<ILN,,
8i(uh — gn
(“ah ,.gz)(xk,a)=0, i=0,1, 0<k<Ny, a=0,1, n>1,
(3.3) 8’(u"x— o)
h_"22(a,y)=0, i=0,1,0<I<N,, a=0,1, n>1,
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whereas using Gauss interpolation, we have

(up—8)¢) =0, ¢e&,
(34) (u%—gl)(f",a)=0, a=071, éxe‘?x,
' (uh_gl)(aaéy)z. s a=0a1a é've‘?y,
(u?,—gl)(a,ﬂ)=0, a,ﬂ=0,1,
(up —g)(&*,a)=0, a=0,1, €&, n>1,
(3.5) (up — g)(a,¢’)=0, a=0,1, ey, n>1,
(u;:_gzn)(a’ﬂ)=0a a,ﬂ=0,1, n>1

For computational purposes, it is more convenient to use Gauss interpolation,
since it does not require the knowledge or evaluation of first partial derivatives
of g; and g,. However, in this paper we consider Hermite interpolation, since
the convergence analysis is much simpler for this type of boundary condition
approximation (cf. [2]).

Let u be a sufficiently smooth function defined on Q. Foreach t [0, T],
the comparison function uz(-,t) € # is defined as the piecewise Hermite
bicubic interpolant of u(-, ), that is,

8™ (uy — u)
(38) —gxiay
In the following, we write #” and u, in place of u(-,t,) and uy(-, ts)

respectively. For n=0,... ,J —1 and £ € &, the truncation error 77(¢) of
the scheme (3.1) is defined by

(k> vi,8)=0, i,j=0,1, 0<k <Ny, 0KILN,.

n+1 n

(37 TIE) = [(Z‘;) (l—rAA)u + LM — )| ().

If u is a solution of (1.1), then [(Qu/dt)" + L"u")(&) = f(&, t,), and hence
T7(&) indicates by how much ugy fails to satisfy (3.1). The following lemma
gives a bound on a discrete norm of the truncation error 7.

Lemma 3.1. Assume a;, b;, i = 1,2, and c are such that a; € C!-0: 0@),

@ € CO10Q), and by, by, c € C(Q). If ue C([0, T, H(Q))n C2:%:1(Q)
C%:2.1(Q)n C%9:2(Q) and du/dt € C([0, T], H3(Q)), then

(3.8)

J—1
e ITEIE < c{ utlZo.0.2g, + A2l 0.1 + 1120 2.15)]
n=0

oul?
+ hS + (1 4+ A%)]|u|? } )
91 || eqo. 71, 1) €0, T1, H3(@)
Proof. 1t follows from Lemma 4.2 of [2] and its proof that, for k=0, 1, 2,
0k (u—ugy) 3 :
(3.9) W ’y < Ch ||u||H3+k B 1= 0, k.
Therefore,

(3.10) IL" (u" - u/’ly)"z? < Ch6||u||2c([o,r],H5(Q))-
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Taylor’s theorem gives

A( n+l _ )(6)—7 ( )

and hence the triangle inequallty and (3.9) imply

A" - ui)l%

< Ch® Nl o, 7y, mrsay + T2UIUIZ2 o, ot el 1))

(é tén) 66?, tnSié,nStrHl,

(3.11)

By Taylor’s theorem,

ou\" urtl —yn 10%u .
(5) ©- L@ =-357C k) (€T, tn<hn<tm,

and hence

ou n un+l —u
(3.12) ” (a) S

Also, since dugy /0t = (0u/dt)z

2

< Cullo.02g
. €0.0.2(Q

)

2

untl — yn u:}?-l;l _ uf?, 1 [+DT g
LA & = ;/m i = e M|
(n+1)T 2.
(3.13) Sl/ [3_“_ (3_”) ](.,s) ds
T Jur ot ot) 2
2
< Ch® ,
6’ (10, T1, H3(@))

where the last inequality follows from (3.9). Finally, (3.8) is obtained by com-
bining (3.10)-(3.13). O

We show that if the constant A is sufficiently large, then the scheme (3.1) is
unconditionally stable with respect to the initial condition and the right-hand
side.

Lemma 3.2. Assume a; € C*2:°(Q), a; € C%%:9(Q), by, b, ce C(Q), and
0<amn<ai(x,y,8),ax,y, ) <amx, (x,y,1)€0.

Also assume that a;, i=1,2, satisfy a Lipschitz condition with respect to t,
that is, there is a constant K > 0 such that for i=1,2,

lai(x,y, t1)—ai(x,y, )| < K|t; — ta],

(3.14) B
(x,y)ega tlatZG[O,T].

Let v, w" € #° be such that

n+1 "

(- ) T o ) = wn0),
Ee%, n=0,...,J-1,

(3.15)
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where
(3.16) A > amax/2.
Then
J—1
(317 max o™ 3 ) < M [amax(—AvO, e + 1 nz% w2 ] ,

where M = Ca_! elCletpi+h+y)’+KIT [amn  C s a positive constant independent
of aj, b;, i=1,2, ¢, h, t, and a, B;, i=1,2, y aresuch that

/ I

‘——aa} \aaf <a, 0<l<s,
0xlle 119V lleq

1billcg) < ﬂi’ i=1,2, llelley < 7-

Proof. Let L" n=0,...,J —1,and A, be the operators from .Z° into
A° defined by

(3.18) (Lpv)&) = L"), (Mv)(&) =Av(S), (€.

It is well known (see, for example, (2.5) of [2]), that —A,, is a positive definite
operator from .#° into .#°, that is

(3.19) Clvlz < (A, v)g, veL°
The operator form of (3.15) is given by (2.1), where
AP =L B=EFE-1lA,.

Employing the approach of the proof of Theorem 4.2 in [2] and using (2.6) of
[25], Lemma 3.2 and (3.2) of [19], and (3.19), we can show that

(3.20) (A", w)g =" (v, w) + 5" (v, w),

where Mi(") , i =0, 1, are real-valued bilinear forms on .Z° x .#° such that
(3.21) S, w) = 4" (w, v),

(322) amin(_AhU ’ U).‘? < %(n)(,u s U) < amax(_AhU > U).? )

(3.23) 1, (v, v) =" D, v)| < KT1(=A, v)g,

(3.24) 1" (v, w)] < C(-Mv, V) lwllg

where J in (3.24) is given by
(3.25) d=a+pi+p2+7.

Let Ag") be the operator from .#° into .#° defined as follows: for v € #£°,
let Ag")v be the element in .Z° such that

(3.26) AP, w)e =W, w), we.L
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The Riesz theorem guarantees that A((,") is well defined, since .#° is a finite-
dimensional Hilbert space and hence for fixed v, %(")(v, -) is a bounded

linear functional on .Z°. Let Ag") be the operator from .#° into .#° such
that

(3.27) A = 40 1 4",
It follows from (3.21), (3.22), and (3.26) that
(3.28) Amin(—81) < A = [ATT < amax(=A4),

where the inequalities are to be understood with respect to the inner product
(+, )g in #°. Moreover, by (3.23),

(3.29) KtA, < A — ATV < K1(=Ay).
Further, (3.27), (3.20), (3.26), and then (3.24) imply that
14 v|% = A (v, 4Pv) < Co(=Aw, v)2 1405,
from which it follows that
(3.30) 1402 < CoX(-Apv, v)g, v el

Using (3.16) and (3.28), we also easily verify that

z
2

Therefore, (3.27)-(3.31) imply that all assumptions of Theorem 2.1 are satisfied
for H =.#° with Ay = —A,, € = amin, &1 = K, & = C6%, &3 = 1. Hence,
(3.17) follows from (2.6), (3.25), (3.28), (3.18), and the inequality (see (2.7)
and (2.8) in [25])

(3.31) B>E+ 4.

(3.32) Cllol ) < (-Awv, v)g. O

Using the bound on the truncation error and the stability result, we prove the
following convergence theorem.

Theorem 3.1. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma
3.1. Let A satisfy (3.16), and let u} € #, n=1, ..., J, be solutions of (3.1),
where u2 €M and ulloq, n=1, ..., J, are given by (3.2), (3.3), respectively.
Then

n n _ _ _
orgnnasxj l|lu" — uh"H'(Q) <C {T[”u”co,o’Z(Q) + ”u“cz,o,l(Q) + “u”co,z,l(Q)]

ou

3
e

+ ||u||C([0,T1,H5(Q))] } .

C(0, 7], H3(Q))
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Proof. A standard approximation result for piecewise Hermite bicubic interpo-
lation (see, for example, [5]) gives

(3.33) oDax, " — uhllm@) < Ch|lullcqo, 11, me@)-

Let v" =ul —u%, n=0,...,J. Then v" € £°, v0 =0, and (1.1), (3.1),
and (3.7) show that v” satisfies (3.15) with w"(¢) = T(¢) . Hence the required
error bound follows from (3.8), (3.17), (3.33) and the triangle inequality. O

3.2. ADI Euler scheme. Perturbing the LM Euler scheme (3.1) by an appropri-
ate term that is first-order accurate in time, we obtain the ADI Euler scheme,

in which the approximate solution u} € #, n=1,... , M, is such that, for
n=0,...,J-1,
(3.34)
2,2 0° upt! —uj
— n,n —
(1 A+ 72 6x26y2) Y A AIGET (N2
As in the LM Euler scheme, u2 e # and Uplo, n=1,...,J, are assumed
to be given.
The truncation error 7}*(£) of (3.34) is defined by
(3.35)
ou n 64 un+l unt
n _ hdiad _ _ 212 X g ne,n _ an
TI(¢) = [(ar) (1 TAA + 124 3x23y2) Tt LMW —ug)| Q)

The following lemma is a counterpart of Lemma 3.1.

Lemma 3.3. Assume a;, b;, i =1, 2, and c satisfy the assumptions of Lemma
3.1. If u € C([0, T], H%(Q)) n C%%1(Q) n C%2.1(Q) n C°%2(Q) and
du/dt € C([0, T], H*(Q)), then

J—1
Y ITIZ < C{ Ul g
n=0
(3.36) + l2(|lullcz 0, |(Q) + ||u||2co,z,|@)) +)~4||u||%‘([o,T],H6(Q))]

oull?
6 2 2
o [ 9t llcqo, 1, @) Hi+ )"ullc(lo’n’m(m)]}‘

Proof. Employing the approach used in the proof of Lemma 4.2 in [2], we can
show that

ot (u" —u'h,)

(3.37) 57057

< Cllu*|l s

The triangle inequality and the Sobolev embedding theorem yield

34( n+l _ u,'ly)
8x28y2

< Cllulleqo, 1, Hs(@)) »
2

and hence (3.36) follows easily from (3.8). O
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Next we show that for A sufficiently large, the ADI Euler scheme (3.34) is
unconditionally stable with respect to the initial condition and the right-hand
side.

Lemma 3.4. Assume a;, b;, i =1, 2, and ¢ satisfy the assumptions of Lemma
3.2. If v", w" € #° are such that, for n=0,1,... ,J -1,

(3.38)

[(1 — TAA + 1222 + L""| &) =w"(¢), ¢eZ,

64 ,Un+l —n
6x26y2) T
where A satisfies (3.16), then (3.17) obtains.

Proof. Let L?, A, be the operators from .#° into .#° given by (3.18), and
let D%, D! be the operators from .#° into .#° defined by

2 2
(339)  (Dh0)O =550, DhIO =530, <eF.

Taking v(x, y) = vi(x)v2(y), vi € £, i =1, 2, we easily verify that

h ph 9% 0
(Dxnyy’U)(é) = W(é), e, veH.

Therefore, the operator form of (3.38) is given by (2.1), where
A=L}, B=E-1iA,+ 2D D},

It is easy to show that D! = [D!]* < 0, D! = [D!]* < 0 with respect
to (-, )z, and that D! D! = D! D! . Thus D} D! >0, and hence (3.17)
follows from Theorem 2.1, using (3.27)-(3.32). O

Combining the truncation error and stability results, we arrive at the following
convergence result for the ADI Euler scheme.

Theorem 3.2. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma
3.3. Let A satisfy (3.16), and let u, € #, n=1,...,J, be solutions of
(3.34), where u) € # and u}lsq, n=1,...,J, are given by (3.2), (3.3),
respectively. Then

n n _ —
Oglnang ”u - uh"H'(Q) < C { T[“u”CO,O,Z(Q) + ”ullcz,o.l(Q)

+ ||u||co,z,:@ + lullco, 71, He@y)l

ou
+h3 [ + ||u||C([0,T],H5(Q))l } :
C([0,T], H¥}(Q))

at
Proof. The proof of the theorem is similar to that of Theorem 3.1 and follows
from (3.36), (3.17) and (3.33). O

3.3. ADI Crank-Nicolson scheme. In this subsection, we consider a second-
order in time two-level ADI scheme for the solution of (1.1) with L=L, + L,,
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where
0 ou 0 ou
(3.40) Lyu = ~ % (al(x, v, t)ﬁ) , Lwu= ~3y <az(x, ¥y, t)g;) .

Let L} and L;'“/ 2 , i =1, 2, be differential operators given by (3.40) with ¢ =
tn and t =t,,1/2 = (n+ 1/2)7, respectively. The ADI Crank-Nicolson scheme

consists of finding u} € #, n=1,...,J,suchthatfor n=0,... ,J -1,
un+l/2 un , )
h 55 h +Ln+1/ n+l/ +Lnuh] &) =1, ths1)2), teg,
(3.41) _
un+1 un+1/2 wtl/2. nel)2 l l
: OSth + LT+ Lt (€)= f(€ tanp), C€F,
i .

where u2 €M, ujlpa, n=1,...,J, are assumed to be given, and where
for each &” € &, , we have uZ“/z(- , &) € M, and

gy @) = [/2) 0 + )

' + (¢/LE ! — L)@, &), a=0, L.
Our convergence analysis of the scheme (3.41) follows that of [26] for the fi-
nite difference ADI Crank-Nicolson method. For ¢ € &, the truncation errors

T, (¢) and T} ,(¢), corresponding respectively to the first and second equa-
tions in (3.41), are defined by

ou n+1/2 un+l/2 —un
n _ |24 _“x X
Tia) = l(a:) 0.5t

(3.43)
(LR g Ly L7+1/2u:;‘/2 - Lgu}/] €,
n+1/2 n+1 n+1/2
= () -
, 9t 0.5t
(3.44)

where %, is the piecewise Hermite bicubic interpolant of u(:, t,). For each
& € ,, we define w5 '/?(-, &) € M, by (cf. (3.42))

(3.45) Wy P(x, &) = [(1/2)(u" + uly) + (1/4)(2"" - zM)](x, &),
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where z"(-, &) € 4, is the piecewise cubic approximation to Lju"(-, ) such
that

e, &) = Lyug (e, &), a=0,1,
(3.46) (X, &) = Lju" (%, &),  k=1,...,Ne—1,
0z" oLju"

e, @) = TR, @), k=0, Ny

The following lemma gives a bound on the discrete norm of the truncation
errors T and 77,

Lemma 3.5. Assume a; € C':%:9(Q) and a;, € C%-1-2(Q)nC> - 1(Q). If u e
C([0, T, H(Q) n C221(Q) n C»%%Q) n C®*2(Q) n C%%3Q),

Lyu € C%%9(Q), du/dte C([0, T], H}(Q)), and 8%u(a, -, -)/0y’dt €
c([0, 1] x [0, T]) a=0,1, then

(3.47)
J—1

T T NE + 1T 53]

n=0

lulls i) + 1402 + 120,225 + 140,05
) ) @

oull?
||u||C 0.7], HSQ + || Lou||? )t
[ (0.1 H() 0@ [0t |l cgo, 1y, e
‘ 35+ku ( ) 2
+ max |—Y(a,-,- )
a=0,1,k=0,1(| 0y C([0, 11x10, 7))

Proof. 1t follows from (3.43)-(3.45) that
Ty (&) = L&) + L&) + 13(6) — (/D)
v 2(8) = L&) + L&) + I;(&) — (r/N3(&),

where

n+1)2 nel _ o
no-(5)  ©-“E =0,

12(&) = LM a1 2(8) — (1/2) LT Pl + ul 19),
(&) = Ly PurtV2(E) — Liuly (8) — (1/2)(2"! = 2")(&),
I:(é) L;’+1/2un+l/2(€) L”“u"+l(§)+(1/2)( n+l — z")(&),

I©) = LTz - 2M)(©),
and where z"(., &) € 4, is defined in (3.46). By Taylor’s theorem,

u n+1/2 u"“ _un 1'2
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and hence (3.13) and the triangle inequality give

ou?

(3.48) ul,inésc[“nu||coo, +he|| %

C(0, 1], H3(Q ))}

Since
I2@E) = L P12 — (1/2) LTV (! + ut) (©)
+ (/2L P — i+ u — uly)(©),

using Taylor’s theorem and (3.9), we obtain

(3.49) 121 < € [e1ul2s 025 + HoeliE 0, 1y, 5y -
Clearly,
(&) = T, + J2&) — (1/2)3&) + (1/2)T41

where

Ji@) = Ly Purs 12 — (1/2)[L5 um + Liu(©),

JR(&) = Liu" (&) - Liug (&), Ja(&) = Lyu" (&) — z"(&).
Using Taylor’s theorem and (3.9), we obtain

I < CPlullconngy> @I < CR\lullcqo, 1, 59)-

For & = (&£*,¢&), where &* € [x;, xn,—1], using (2.17) of [5] with m = 2,
p=3,and g =r =00, we find that

1@ < Ch Lol 0,05
To bound JJ3(&) for & ¢ [x1, xy,—1], we use the following result, which
follows from (9.4) and (9.5) of [19] with r = 3, p =1 and a = 2 : if
v € C3[0, 1] and vy € 4, is its piecewise Hermite cubic interpolant, then
(3.50) (v —vg)" (&) < CR v icpo, 1y, éx € Fh.
Now, if &* € [0, x;]U[xn,—1, 1], using (3.50), we can show that
35

a 5(a’ ")

|73(&)| < Ch3 [||L2u||C3 s.0g) + Max } .
C([0, 1]1%x[0, T])

Similar considerations apply also to I}(¢). Therefore, for i =3, 4,
(3.51)

M < c{ .05 + h |||u||é([0,n,,,5(g)) -

2
C([0,1]><[0,T1)} } .

+max gs(a, o)

Clearly,
L&) = T3 + ;&) - I,
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where
JHE) = Ly La+turt - Lrur)(E),

J3&) = LM PILgut - 27)(8),  J8(E) = LI Pt turtt — 2 (8).

It follows easily from Taylor’s theorem that
RO < Ctllull ez g,
For & = (&¥, &) with &* € [x;, xn,—1], using (3.50), we obtain
IT2 @) 1R )] < CR|| Lot e5,0,005

If £&* €0, x1]U[xn,—1, 1], then by (2.5) of [19] it can be shown that

0%u
aySat(a> *s ')

IJn6( ) Js(é)l <C [h3|IL2u||C5 0,000 + ht max ] .
=0, (10, 11x[0, T))

Therefore,

1z < c {hﬁuLzuuzs,o,o@

(3.52) )

6—y—56—t'(aa *y ')

I}

The next lemma shows that, for # sufficiently small, the scheme (3.41) is
stable with respect to the initial condition and the right-hand side.

+1 [Ilullcz 21 T max

Finally, (3.47) follows from (3.48)-(3.52). O

Lemma 3.6. Assume that a; and a, satisfy the assumptions of Lemma 3.2. Let
v, wl, wh € #° be such that, for n=0,...,J -1,

+ L;z+1/2vn+l/2 +L5”U"J (6) — w{'(é), Ee g’

'U"+l/2 — "
0.5t

(3.53)
[U"+l _ ,Un+1/2

TR | @ < upe),  ce7,

where, for each & € &,, one has v"+\/2(-, &Y) € M. Then, for h sufficiently
small,

2

LZ(o 1)]

T
<C lll(l +0.50L)v°Z + Ty Z(Ilwi’llé + IIWSH%)] .
n=0

max [

0<n<J 6y é" i)

(3.54)
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Proof. Tt follows from (3.53) and the triangle inequality that

(3.55) (1 + 0.5¢Ly/2)ur+12)|¢ < |[(1 - 0.57Ly)v"||g + 0.5t]|lw] e,
(1 +0.5tLr+ )™ ||g < ||(1 = 0.5¢LT Y/ *)um+172| g + 0.57|wf||g-

If & is sufficiently small, then inequality (4.14) of [2] implies that
(3.56) (LT, v)g >0, vedd?, (Liv,v)g>0, ved
Since
(1 £ 0.5eLi* 2yo)lg = ol £ (L7 0, v)g + 1 ||L;'+‘/2v||é,

the first inequality in (3.56) gives
(3.57)  |I(1 —0.5¢tL™ ' )ulg < |I(1+0.5¢LT P)ollg, ves.
By a similar argument,
(3.58) (1 -0.5tL3)v|e < ||(1 +0.5tL})v|lg, ve.#°.
Hence, (3.55), (3.57), and (3.58) yield

(1 +0.5¢L5*v™*|g < ||(1+0.5TLE)v"|lg + 0.5t(|lwillz + lwflle),

and therefore, for n=0, ..., J,

I(1+0.5¢L5)v"|ls < [I(1 +0.57L3)0 g

(3.59) —
+0.57 > (Jlwllle + ws]lz).

For A sufficiently small, (2.6) of [25], (4.14) of [2], and (3.2) of [19] give

2
L2(0, 1)] .

(1 4+ 0.5¢L})v"|%

(3.60)

> C | Iv"117 g (ék ir*)

Hence, (3.54) follows from (3.59) and (3.60). O

Finally we arrive at the following convergence result.

563

Theorem 3.3. Assume that a;, a, satisfy the assumptions of Lemmas 3.5 and
3.6. Let u be the solution of (1.1) satisfying the assumptions of Lemma 3.5.
Let uh el ,n=1, , J, be solutions of (3.41), where u) € # and u}|sq,
n=1, ,J,are gzven by (3.2) and (3.3), respectively. Then, for h sufficiently
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small,

B(u

[ ék i)

) 1/2
20, 1)]

< {T lull 2.2, 1@ T llullcz.0. @)t lullco.. g T llull co.0.3 Q)]

0<n<J [

ou
at

["u“C([O 11, 159@) + IL2Ul cs.0.0) +
C([0, T, H3(Q))

35+ku
+  max —(a, -, ) )
a=0,1,k=0,1|8y30tk C((0,11x[0,T)
Proof. Let v" =u? —u%, n=0,...,J,andlet v"*1/2 = uZ“/z u;;m n=

0,...,J —1,where u}'/* is defined by (3.45). Then (1.1) and (3.41) imply
that v", v"*1/2 satisfy (3.53) with w}(€) = T7 (&) and wi (&) = T} ,(&),
where T} |(¢) and T} ,(&) are given by (3.43) and (3.44), respectively. Clearly,
v" € #°, v° =0, and v"+!/2(., &) € #?. Hence the required inequality
follows from (3.54), (3.47), (3.33) and the triangle inequality. 0O

Theorem 3.3 shows that the ADI Crank-Nicolson orthogonal spline collo-
cation approximation uj converges to the exact solution #” with accuracy
O(t% + h?) in a norm that is stronger than the L2(Q)-norm but weaker than
the H'(Q)-norm.

4. THREE-LEVEL SCHEMES

In this section, we present and analyze three three-level piecewise Hermite
bicubic orthogonal spline collocation schemes for the approximate solution of
the parabolic problem (1.1).

4.1. Laplace-modified method. In the orthogonal spline collocation LM method
which is a counterpart of the finite element Galerkin LM method of [18],

the approximate solution u} € #, n =2,3,...,J, is such that for n =
1,...,J-1,
(4.1)

un+l_un 1 un+1_2u +ut 1

[h—zth— (T Tzh b+ Lup| (©) = fE. tn), (€,
where u), uy € # and uflpq, n=2,...,J, are assumed to be given.

As in the case of the two-level schemes, we use the piecewise Hermite bicubic
interpolant of the exact solution as the comparison function. Hence, for n =
l,...,J—1 and ¢ € &, the truncation error 7(¢) of (4.1) is defined by

(4.2)
n+1 n—1 n+1 2 n n—1
Tu"(é)=[(93) Yr Vx| ogptx T2t e peee )@,

ot 27 72
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A bound on the discrete norm of the truncation error is given in the following
lemma.

Lemma 4.1. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.1. If u € C([0, T], H(Q)) n C?%2(Q)n C%2:2(Q) n C%:9:3(Q)
and 0u/dt € C([0, T], H3(Q)), then

Ty IT7E < C{ Tl o, @) +/12(||u||éz,o,2(Q +lullZe . @)
4.3) ™!

oul?
+h6[ + (1L + ) ullzq0. 77, m3@ l}
31 || cqo. 11,20 (10, 71, H5(Q))
Proof. By Taylor’s theorem,
ou n un+l — - 1 1'2 33
(5) ©-EF0--255 e

and
A(un+l —2u" + un—l)(é) 2a (Au) (f t{ n)

where t,_y < ,, % n < tny1. Hence, (4.3) follows from the triangle inequality
and arguments similar to those used in the proof of Lemma 3.1. O

Next we show that if A is sufficiently large, then the LM scheme (4.1) is
unconditionally stable with respect to the initial condition and the right-hand
side.

Lemma 4.2. Assume a;, b;, i =1, 2, and c satisfy the assumptions of Lemma
3.2. Let v*, w" € #° be such that, for n=1,... ,J -1,

(4.4)
n+l _ ,n—1 n+l _ n n—1
T R A G RGN
where
(4.5) A > amax/4.

Then there exists a positive constant M , independent of h and T, such that

J—1
(4.6) max "vn”Hl(Q) <M [(-A0°, 00)g + (-A0" v )g +T Y Ilw”IIéJ :

n=0
Proof. Let L} and A, be the operators from .#° into .# 0 defined in (3.18).
Then the operator form of (4.4) is given by (2.13), where

AW =17, B=E, R=-iA

It follows from (3.27)-(3.31) and (4.5) that all the assumptions of Theorem
2.2 are satlsﬁed for H = #°, with 4y = —-A,, € = amin, &1 =
Kmax(a_! , [42 — dmax]™!), & = C6%, where ¢ is defined in (3.25), &3 =1,
&4 = 4A/amax — 1. Therefore, (4.6) follows from (2.19) and (3.32). O
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The truncation error and stability results yield the following convergence
theorem.

Theorem 4.1. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemma
4.1. Let A satisfy (4.5), and let u} € #, n=2,...,J -1, be solutions of
(4.1), where u) € # and ullsq, n=1,...,J, are given by (3.2) and (3.3),
respectively. Then

1/2
max. 4" — e < C { (Al — ), b — u)Y

0<n<J
(47 + Plllcossig) + lcao gy + ¥lco.ag)]
ou
+h? [ ot + ||u||C([o,T],H5(Q))] } .
C(10,T], H3(Q))

Proof. Let v" = u} —u%, n=0,...,J. Then v" € #°, v° =0, and
(1.1), (4.1) imply that the v" satisfy (4.4) with w"(&) = T/ (&), where T7(£) is
defined by (4.2). Hence the required inequality follows from (4.3) and (4.6). O

We now explain how u}, € .# can be selected, and we also bound the term

(4.8) (—A(u) — uly), uy —u) 2,

which appears on the right-hand side of (4.7). For the first choice of u,‘, , We
assume that the differential equation in (1.1) is satisfied for ¢ = 0. Then, using
Taylor’s theorem, we obtain

ul(x,y)=z(x,y)+0(?,

where

z(x,y)=&(x, y) +1lf(x,y,0) - L& (x, y)l.
As stated in Theorem 4.1, u}|sq is given by (3.3) with n = 1. To complete
the definition of u},, we also require that

(4.9)

O (u} — z)
Oxigyi
3i+l(u}ll _ Z)
oxioy
O™ (u} - z)

0x0yJ
82(u}, - 2)

o0xady
If zg is the piecewise Hermite bicubic interpolant of z, then it is easy to see
that u, = z on all interior partition cells, that is, cells [xg_1, Xk, Yi—1, V]
which do not have common points with Q. (The choice u} = z on Q
would lead, in general, to u} — u} # 0 on 0Q, which would prevent us from

(xk>yl)=03 iaj=031a ISkSNx—]», ISISNy_I;
(e, @)=0, i=0,1, 1<k<Ni—1, a=0,1,
(asyl)zoa j=031> ISISN})_1> a=0a1a

(a, B)=0, a,p=0,1.
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using Lemma 4.2 in the proof of Theorem 4.1.) To bound (4.8), we use the
obvious identity

(4.10) V= U — Uy =v; — vy — U3+ Vs,
where
_ 1 1 _ _ 1 _ 1
U=U —Ugp, V) =2Z—Zg, v3=uUu — 2z, Vg = Uy — Zgp.

Let £* be the set of all Gauss points in & which are not in the interior
partition cells. Assuming that u and z are sufficiently smooth, using (3.9),
Taylor’s theorem and Theorem 5 of [5], we can show that

lAvillg, [Avallg < CR*,  ||Awslg < CT2,

4.11
@40 |Ava(§)| < CT?h~2,  EeZr,

(4.12) [wi@)l, [@)I<Ch*, £, |u@)l, @) <CT, e,

Therefore, it follows from the Cauchy-Schwarz inequality that

3 4
[(Av, v)g] <S> Aviliglvslle + A Y 1Ava@)l (@)l < C(T*h™" + A°),

i=1 j=1 e
and hence
(4.13) (—Au) — uly), uly —u)g? < C(?h~"2 + h3).

It should be noted that if (0%u/dt*)(x,y,t) =0 for (x,y) € dQ, which for
example, occurs when g, is independent of ¢, then A~!/2 does not appear in
(4.13).

Another way of choosing u} € .#, where u,‘,lag is given as before, is to
perform one step of the Crank-Nicolson scheme,

1_,0
(4.14) | XY

P L+ L] €)= 5 € )+ fE 0], E€F.

Obviously, computing u}, in this case requires the solution of one elliptic or-
thogonal spline collocation problem. To bound (4.8), we set v" = uj — u%,,
n=0,1. Then v°=0, v! € £°, and (1.1), (4.14) yield

(4.15) [2E +tAD)w¢) = 21w(§), (€e¥,

where A() = L} is an operator from .#° into .#° defined by (3.18) with
n=1, and w € #° is given by

1
we) =33 (5 )(«:) LUy ). ZL"(u _u)E),  Eew
n=0



568 BERNARD BIALECKI AND R. I. FERNANDES

If u is sufficiently smooth, then it is easy to show that
(4.16) lwllg < C(z* + h).

Now, using (3.27) with n = 1 in (4.15), and then taking the inner product
(-, -)¢ of both sides with v!, we obtain

4.17) 2L + (40!, vY)g = 2t(w, v')g — (40!, v
Using the Cauchy-Schwarz inequality, the inequality
af < (3/8)ta* + (2/3)t7 182,
and (3.30), we obtain
2t(w, v)g — 1(AVv!, vl)g
(4.13) 2 4 3.2 2 3500 1,1
<2vile + ry lwllg + ‘8‘C5 T(=Apv’, Vg

Thus, it follows from (4.17), (4.18), (3.28), and (4.16) that for 7 sufficiently
small,

(~A(uf — uy), uj — ulp)g” < Co'Pwlly < CT'2(x + ).

4.2. ADI methods. In this subsection, we present two three-level ADI schemes
which are obtained by perturbing the LM scheme (4.1). The schemes of this
section are orthogonal spline collocation counterparts of the corresponding finite
element Galerkin schemes proposed in [15, 18]. In the first three-level ADI
method, the approximate solution up € £, n=2,3,... ,J, satisfies

a4 uptt — !
0x20y? 27

( 1 + 47212

(4.19) m 20 4 g0

S + L"uz] ) =1 1),

(eZ, n=1,...,J-1,

where ), u, € # and uf|pq, n=1, ..., J, are assumed to be given.
For n=1,...,J—1 and & € Z, the truncation error 7 (&) of the scheme
(4.19) is defined by

ou\" 22 04 uy!' —uy!
7m®=K3ﬂ - (140 )

n+1

+ 1Az

(4.20)

—2ul, +ut !
£ —F +L"<u"—u;y)] &)

Lemma 4.3. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.1. If u € C([0, T], H3(Q))n C*%2(Q) n C%2:2(Q) n C%°:3(Q)
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and du/dt € C([0, T], H5(Q)), then

J—1
2
Ty ITHIE < C{ [Ilullco 0.3@
n=1

o
(4.21) (11202 + 12120 2.5 + 24 || 5
C < 0t |l cqo, 1, mo)
+ hS gu (1+;12)||u||2c([0,T]’H5(Qn]}.
Hlcqo, 11, 3@)

Proof. Since dug /0t = (0u/dt)s , following (3.13) and using (3.37), we obtain

94 u};”‘ u}?' i 94 un+l — yn-1 2
0x20y? 27 0x20y? 27 .
2

(n+1)t 4
-/ 09 (up—u)(-, s)ds

Z (n—1)t 6x26y25

(4.22) v
<i/<n+m 94 [(814) ( s)
- 27 (n—1)t 8x26y2 ot 7 Bt
2
<cl|2¥| .
At lico, 11, HE(@)

By a similar argument and the Sobolev embedding theorem,

” 94 wn+l —n=1\ (12 1 [t 94 gy J 2
8x28y2< 2t ) - 2_1/_ . 0x20 2_6—t(°’s) s
(4.23) Z (2n 1) y 2 z
(n+1)t 4
<i/ ——2——2@(-,3) a’sSC‘% .
27 Jin-1)e ||0x20y? Ot g Oticqo, 11, moce)
Hence, the triangle inequality, (4.22) and (4.23) give
4 n+l _ , n—1

(4.24) O (Y U )| <c|%

0x20y 27 . at cqo, 1], HG(Q))

Inequality (4.21) now follows from (4.3) and (4.24). O

The convergence result for the scheme (4.19) is given in the following theo-
rem.

Theorem 4.2. Assume that a;, b;, i = 1,2, and c satisfy the assumptions of
Lemma 3.2 and that the solution u of (1.1) satisfies the assumptions of Lemmma
4.3. Let A satisfy (4.5), and let uj € #, n=2,...,J — 1, be the solution
of (4.19), where ud € # and ulloq, n=1,...,J, are given by (3.2) and
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(3.3), respectively. Then

max ||u" — uf}
onax, l Wl (@)

<C { (—Aup — uly), up — ulp)e

ou

ot

2
+7° {lull co.0.35) + 1Ullc2.0.25) + 1%l co.2.25) +
[ © @ e c(o, 11, ()

ou

3
e

+ ||“||C([0,T],H5(Q))} } :

C([0, T], H3(Q))
Proof. Let L}, A, and D%, , D}',’y be the operators from .#° into .#° defined
in (3.18) and (3.39), respectively. Let w” € .#° be such that w"(§) = T*(&),
£ e %, where T7(&) is given by (4.20). Then (1.1) and (4.19) imply that the
v" = ul —ul, € #° satisfy (2.13) with

AW =L, B=E+42)*D! Dt

k. R=—iAy

Since D)’}XD;'}, > 0 (see the proof of Lemma 3.4), it follows from the results
established in the proof of Lemma 4.2 that all assumptions of Theorem 2.2 are
satisfied. Therefore, the desired inequality is a consequence of (2.19), (4.21)
and (3.32). O

As in the three-level LM method, u,‘, can be selected again in one of the two
ways which are described at the end of §4.1.

In the second three-level ADI scheme, the approximate solution u € /4,
n=2,3,...,J, satisfies

n+l _ ,n—1
Uy U
21

(4'25) 2 342 64 uz+l - 2“;: + uz_l
. . Ln n
(‘t AA —27°2 8x28y2) p) + L"uj | (&)
=f(€atn), ée‘?a n=1>"-a-]_1;
where u), u},and ul|aq, n=2,...,J,are assumed to be given.
The truncation error 77(&), n=1,...,J -1, &€ Z, of the scheme

(4.25) is defined by

n n+l _ . n—1 4
T5(6)=[(%) L A 2 +(‘t2,1A—2t3A2 9 )

ot 27 0x20y?
(4.26)

n+l1
4

—2ut, +u!
T;” Z_ 4 L"u" - u})} (&).

Lemma 4.4. Assume a;, b;, i = 1,2, ¢, and u satisfy the assumptions of
Lemma 4.3. Then T} given by (4.26) satisfies (4.21).
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Proof. Writing 3! — 2uj + wy ! as (Wil —ulh) — (ul —uy') and using
arguments S1m11ar to those in (4.22)-(4.24), we can easily show that

a4 (u;;f‘ 2ul, +uly )“

(4.27)

0x29y?
Hence, inequality (4.21) follows from (4.3) and (4.27). O

The convergence result for the scheme (4.25) is given in the following theo-
rem.
Theorem 4.3. Assume that a;, b;, i=1,2, ¢, u, and 2 satisfy the assump-
tions of Theorem 4.2. Let uj € #, n=2,...,J —1, be solutions of (4.25),
where u) € # and u}lpa, n=1,...,J, are given by (3.2) and (3.3), re-
spectively. Then

C(IO,T],H‘(Q)) '

ojax, lu" — upllp g

<C {(—A(u}, —ul), (uh —up))y’

82 1 1 82 1 1 2
+7 (W(“h —Uz), 3—y2(uh - “,7’))

4
ou
"u”CO 0.3 T 1l c2.0.25) + Nullco.2.2 :l
© ©@ ot F P
ou
+h at + llullego, 71, ms@y | ¢ -
C([0,T1, H3(Q))

Proof. The proof of the desired inequality follows from the results established
in the proofs of Lemmas 4.2, 3.4, Lemma 4.4, and Theorem 2.2 applied to
(2.13) with the operators

AN =L, B=E, R=-1A+2tA*Di.Dl. O
As in three-level LM method, u,‘, can be chosen as in (4.9), so that if # and z

are sufficiently smooth, then (4.13) is satisfied. Moreover, using (4.10)-(4.12),
we can also show that

(82(14;1 —ub) 9%ul - u}{,)) 12
T a 5
2

= 572 < C(Bh32 4 1)

It should be pointed out again that if (3%2u/dt*)(x, y,t) =0 for (x,y) € 0Q,
which is the case when g, is independent of ¢, then A~3/2 does not appear in
the last inequality.
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